
On the Longest Common Parameterized

Subsequence

Orgad Keller∗ Tsvi Kopelowitz∗ Moshe Lewenstein∗

Abstract

The well-known problem of the longest common subsequence (LCS), of
two strings of lengths n and m respectively, is O(nm)-time solvable and
is a classical distance measure for strings. Another well-studied string
comparison measure is that of parameterized matching, where two equal-
length strings are a parameterized-match if there exists a bijection on the
alphabets such that one string matches the other under the bijection. All
works associated with parameterized pattern matching present polynomial
time algorithms.

There have been several attempts to accommodate parameterized match-
ing along with other distance measures, as these turn out to be natural
problems, e.g., Hamming distance, and a bounded version of edit-distance.
Several algorithms have been proposed for these problems.

In this paper we consider the longest common parameterized subse-
quence problem which combines the LCS measure with parameterized
matching. We prove that the problem is NP-hard, and then show a cou-
ple of approximation algorithms for the problem.

1 Introduction

The problem of finding the longest common subsequence, denoted as LCS, of
two given strings is one of the classical and well-studied problems in the area
of algorithms: given two strings B and C of lengths n and m respectively
(throughout this paper we will assume n ≥ m), we wish to find the longest
string that is a subsequence of both B and C.

For apparent reasons, LCS is one of the most natural measures used to test
the similarity between two strings. While this problem and its variants are
interesting theoretically, they are of fundamental practical use in the areas of
molecular biology and code analysis, e.g., where one wishes to test the differences
between two programming language code fragments. To name only one, the well
known UNIX diff command applies LCS as its main tool.

The classic and well-known solution of Wagner and Fischer [19] uses dynamic
programming to solve the problem in time O(nm). It can be generalized to

∗Department of Computer Science, Bar-Ilan University, Ramat-Gan 52900, Israel;
{kellero, kopelot, moshe}@cs.biu.ac.il

1

solve LCS for any fixed number of input strings in polynomial time. Masek
and Paterson [16] improved the running time of the case where n = m to
O(n2/ log n), by using the “four russians” technique. Other solutions—e.g., [10,
18, 17]—in which the running time of the solutions are dependent on different
parameters besides the length of the strings, have also been provided.

While, as mentioned, the problem for any fixed number of strings can be
solved in polynomial time, Maier [15] showed that LCS on an arbitrary number
of strings is NP-hard (by applying a reduction from vertex cover), and later
Jiang and Li [11] showed that there exists a constant δ > 0 for which there is
not an nδ-approximation algorithm for the problem, unless P = NP. Note that
when the number of input strings is fixed to be 2, almost all LCS variants can
be solved in polynomial time.

Another very important and interesting model for testing similarity between
strings, introduced by Baker [2, 3, 4, 5], is called parameterized matching, or
p-match in short. In this model, two length-n input strings are said to p-match
if (roughly, and will be detailed later) there exists a bijection on the alphabet
symbols which maps the i-th symbol of the first string to the i-th symbol of the
second. As the symbols of the alphabet can be, for example, programming lan-
guage code tokens, this model has practical importance in testing whether two
code segments are essentially the same, even when some tokens (e.g., variable
names) have been globally renamed.

In parameterized pattern matching, we get a length-n text and a length-m
pattern and wish to report all locations i in the text where the pattern p-matches
the length-m text substring starting at location i. Extensive amount of work
has been done on this problem: Amir et al. [1] showed an efficient algorithm
even when the alphabet size is O(n), which runs in worst-case O(n log σ) time,
where σ is the size of the parametric alphabet. In [8] they showed how to effi-
ciently provide an approximate solution, and in [9] they generalized the problem
for the 2-dimensional case. In [13, 3, 4, 6] it was aimed at providing parameter-
ized text indexing, and was shown how to efficiently construct a parameterized
suffix tree. Finally, Ferragina and Grossi [7] showed how to provide for efficient
parameterized text indexing even in external memory.

In parameterized pattern matching, we benefit from two facts: the first,
that in each match, consecutive symbols of the text are compared against the
pattern, and the second, that in two locations where the pattern matches the
text, the corresponding bijections need not be the same. It is very natural
and tempting to solve the problem without using these conditions to aid us; by
this, we adapt the p-match model to the LCS problem, thus defining the LCPS
problem discussed in this paper. Such a setting would be very practical in
the case where, for example, two code fragments—an original, and a suspected
copy—are being tested for similarity after the alleged copy has been edited,
besides possibly having its variable names changed. Unfortunately, we show
that this problem is NP-hard. We prove this by a reduction from the problem
of 3D-matching in a graph [12], and then provide a couple of approximation
algorithms, which yield a λ

√
|OPT|-length solution for any constant λ, where

OPT is the optimal solution.

2

A note must be made about the similarity between LCS and edit-distance [14]:
testing the similarity of two strings via LCS is the equivalent of doing so using
edit-distance when the edit operations allowed are only insertions and deletions.
Baker [5] discusses the notion of parameterized edit-distance, in which the op-
erations allowed are insertions, deletions, and p-matches, where the p-match
edit operation replaces a substring in the first string with a substring that p-
matches it which appears in the second. Therefore, the aiding conditions of
parameterized pattern matching still play a role there.

The rest of this paper is organized as follows: in Sect. 2 we provide the
formal definitions of our problems. In Sect. 3 we provide some preliminaries. In
Sect. 4 we provide a näıve algorithm for the specific case where the parametric
alphabet is small. In Sect. 5 we prove that the LCPS problem is NP-hard. In
Sects. 6 and 7 we provide an approximation for a specific case of the problem
called LCMS, and for the general LCPS, respectively. In Sect. 8 we give our
concluding remarks.

2 Problem Definitions

Let S = s1 . . . sn and T = t1 . . . tn be strings over alphabet set Σ∪Π, such that
Σ ∩ Π = ∅. We say S and T are a parameterized-match (p-match for short) if
there exists a bijection f : Π → Π for which, for each i = 1, . . . , n, it holds that:

1. if si ∈ Σ, then si = ti.

2. if si ∈ Π, then also ti ∈ Π, and f(si) = ti.

For two strings B = b1 . . . bn and C = c1 . . . cm over Σ ∪ Π, We define their
common parameterized subsequence (CPS for short) as a pair of two ascending
sequences I = 〈i1, . . . , ik〉 and J = 〈j1, . . . , jk〉 of locations in B and C respec-
tively (i.e., i` ∈ {1, . . . , n} and j` ∈ {1, . . . , m} for each ` = 1, . . . , k), such that
BI p-matches CJ , where BI = bi1bi2 . . . bik

and CJ = cj1cj2 . . . cjk
.

The longest common parameterized subsequence problem is defined as follows:
Input: Two strings B = b1 . . . bn and C = c1 . . . cm over alphabet set Σ ∪ Π,
such that Σ ∩Π = ∅.
Output: A CPS of maximal length, denoted LCPS.

By CPS we will also denote the decision version of the problem, in which
we ask whether two strings have a common parameterized subsequence of a
specified length. The meaning will be clear from the context.

The specific case of the LCPS problem in which Σ = ∅ (i.e., the only al-
phabet is the parametric alphabet Π) is denoted the longest common mapped
subsequence (LCMS) problem.

3 Preliminaries

Let A be an algorithm (exact or approximate) for the LCPS problem. A(B, C)
returns a pair (I, J) of sequences of indices in B and C respectively. Denote

3

I = 〈i1, . . . , ik〉 and J = 〈j1, . . . , jk〉. We define the length of the solution
|(I, J)| = |I| = |J | = k and denote |A(B, C)| = |(I, J)|.

A convenient way of describing the CPS restrictions is by defining the se-
quence graph: given the input strings B and C and two sequences 〈i1, . . . , ik〉 and
〈j1, . . . , jk〉 of locations in B and C respectively, a sequence graph is a directed
planar graph G = (V,E) in which the vertex set V is the set of location-specific
characters of B and C, set on a grid in the following manner:

1. for each i = 1, . . . , n, bi is set at grid location (i, 1);

2. for each j = 1, . . . ,m, cj is set at grid location (j, 0);

and E is defined such that there is an edge from (i`, 1) to (j`, 0) for each ` =
1, . . . , k. Formally: E = {((i`, 1), (j`, 0)) | ` = 1, . . . , k}.
Remark 1. For convenience, when we refer to some edge written as “(bi, cj)”
or described as “the edge mapping bi to cj”, we mean the specific edge from
grid-point (i, 1) to grid-point (j, 0) (if such exists), and not to any other edge
whose endpoints are two other grid-points labeled with the symbol bi and the
symbol cj , respectively, which might also exist in the graph.

If a sequence graph contains some edge (bi, cj), we say bi is mapped to cj .
Two different edges (bi, cj), (bi′ , cj′) are said to be intersecting if the straight line
on the plane connecting grid-point (i, 1) to grid-point (j, 0) (which corresponds
to (bi, cj)) crosses the straight line connecting (i′, 1) to (j′, 0) (which corresponds
to (bi′ , cj′)). Alternatively: if i′ ≥ i, but j′ ≤ j.

Observation 1. If the sequences 〈i1, . . . , ik〉 and 〈j1, . . . , jk〉 are both ascending,
then the sequence graph does not contain intersecting edges.

A sequence graph is said to be a CPS graph if it corresponds to some CPS,
i.e., to two sequences 〈i1, . . . , ik〉 and 〈j1, . . . , jk〉 which comply with the condi-
tions described in Sect. 2. Notice that there is always a one-to-one correspon-
dence between a CPS of two strings and a CPS graph.

Let X, Y, Z be three disjoint sets such that |X| = |Y | = |Z| = n, and let
S ⊆ X × Y × Z. In the 3D-matching problem [12], we wish to find a subset
S′ ⊆ S which is a perfect matching of X, Y , and Z, i.e., every element of X, Y ,
and Z is covered by S′ exactly once. In the problem’s decision version, denoted
3DM, when given (X, Y, Z, S), we say (X,Y, Z, S) ∈ 3DM if there exists such
a perfect matching S′ ⊆ S. Notice that we can always assume n < |S| < n3,
otherwise solving the problem is trivial.

4 Solving the Problem for Asymptotically-Small
Π

Theorem 1. There exists an algorithm N for the LCPS problem, which solves
the problem in O(|Π|! · nm) time.

4

Proof. We propose the following “näıve” algorithm: for each possible bijection
f : Π → Π, construct a new string Bf by replacing each symbol bi ∈ Π in B with
f(bi), and find LCS(Bf , C) using [19]. Finally, choose the bijection f for which
LCS(Bf , C) gave a maximal-length result, and recover its corresponding indices
in Bf (and hence, in B) and in C. Clearly, this algorithm is correct. Since
there are |Π|! possible bijections from Π to Π, and [19] runs in time O(nm), the
running time is O(|Π|! · nm).

Corollary 1. If |Π| = c for some constant c, then the LCPS problem can be
solved in time O(nm).

Corollary 2. Assume w.l.o.g. that n ≥ m and let c be a constant. If |Π| ≤
c log n

log log n , then the LCPS problem can be solved in time

O((c log n/ log log n)! · nm) = O
(
2

c log n
log log n log(c log n

log log n)nm
)

= O(nc+1m) . (1)

Remark 2. Note that N also trivially solves the LCMS problem, and therefore
will be used as such later.

5 Finding the LCPS of Two Strings is NP-hard

We define the decision version of the LCPS problem: for two strings B and
C and an integer t, we say (B,C, t) ∈ CPS if there exists a solution (I, J) for
LCPS(B, C) such that |(I, J)| ≥ t.

Theorem 2. LCPS is NP-hard. Alternatively: if there exists a polynomial-time
algorithm for LCPS, then P = NP.

Proof. We show that LCPS is NP-hard (or rather, that CPS ∈ NPC) using a
reduction from 3DM:

The Reduction. Given the input-tuple (X,Y, Z, S) for the 3DM problem,
where |X| = |Y | = |Z| = n (note that in this section n denotes the size of
X, Y , and Z) and S = {t1, . . . , ts} ⊆ X × Y × Z, we choose Σ = ∅ and
Π = X ∪ S ∪ {∗}. In order to construct the reduction strings properly, we first
require some notation: for a specific tuple ti = (x, y, z), we denote x(ti) = x,
y(ti) = y and z(ti) = z. For some fixed yi ∈ Y , we define S(yi) = {(x, y, z) ∈
S | y = yi}, i.e., S(yi) is the set of all tuples in S having yi as their y-coordinate.
Denote s(yi) = |S(yi)|. Furthermore, assume S(yi) = {tr1 , . . . , trs(yi)

}, where
the sequence 〈tr1 , . . . , trs(yi)

〉 is S(yi) sorted in ascending order of x-coordinates.
We define the blocks

BB
yi

= x(tr1)x(tr2) . . . x(trs(yi)−1)x(trs(yi)
) , (2)

and
BC

yi
= trs(yi)

trs(yi)−1 . . . tr2tr1 . (3)

5

In other words, in BB
yi

we list the x-coordinates of the tuples in an ascending
order, and in BC

yi
we list the tuples themselves (each tuple serves as a single char-

acter), only this time, in the descending order of their respective x-coordinates.
As we shall see later, the role of BB

yi
and BC

yi
will be to assure that no two tuples

which share the same y-coordinate value will be included in S′, i.e., each yi will
be covered at most once by a tuple in S′. Finally, we define BB

zi
and BC

zi
, using

the same principle, only this time for the z-coordinates.
We now move to construct the strings, each comprised of three segments:

B =

Seg. 1︷ ︸︸ ︷
x(t1) ∗3 . . . ∗3 x(ts)∗3

Seg. 2︷ ︸︸ ︷
BB

y1
∗3 . . . ∗3 BB

yn
∗3

Seg. 3︷ ︸︸ ︷
BB

z1
∗3 . . . ∗3 BB

zn
∗3 , (4)

and
C = t1 ∗3 . . . ∗3 ts∗3︸ ︷︷ ︸

Seg. 1

BC
y1
∗3 . . . ∗3 BC

yn
∗3︸ ︷︷ ︸

Seg. 2

BC
z1
∗3 . . . ∗3 BC

zn
∗3︸ ︷︷ ︸

Seg. 3

. (5)

Notice that each of the strings contains s + 2n blocks of ∗ symbols—each block
is of length 3—and 3s non-∗ symbols (since each tuple appears exactly once in
each segment of C, and for each such single appearance, the tuple’s x-coordinate
appears once in the respective segment of B). We derive that |B| = |C| =
3(s + 2n) + 3s = 6s + 6n. Finally, we choose t = 3s + 9n < 6s + 6n.

Before showing that this reduction is correct, we require some definitions:
for some sequence graph of B and C, we define an (∗, ∗)-type edge as an edge
whose endpoints are both ∗ symbols, and an (x, t)-type edge as an edge whose
endpoint in B is some x-coordinate value, and whose endpoint in C is some tuple.
Likewise we define an (x, ∗)-type edge and an (∗, t)-type edge. We continue to
the following claim:

Claim 1. Assume a CPS of B and C is given, and is of length 3s + 9n, and
let f be its corresponding bijection. Then the following statements apply to the
corresponding CPS graph and bijection f :

1. f(∗) = ∗.
2. There are exactly 3n (x, t)-type edges, and exactly 3s+6n (∗, ∗)-type edges.

3. Every ∗ at some location i in B is mapped to its respective ∗ at location i
in C.

4. Each segment of B contributes exactly n (x, t)-type edges. In particular,
Segment 1 of B contributes n (x, t)-type edges, all of them vertical.

5. Each BB
yi

(resp. BB
zj

) block contributes exactly one edge, to a symbol in BC
yi

(resp. BC
zj

).

Proof. We prove each item using the previous ones:

6

1. Assume by contradiction that f(∗) 6= ∗. In this case (as shown by a very
loose analysis), there are (a) at most 3 (∗, t)-type edges (since each unique
tuple ti appears at most 3 times in C, one in each segment), (b) at most
3s (x, ∗)-type edges (since a unique x-coordinate appears at most s times
in each segment of B), and (c) at most 3n (x, t)-type edges (since there
are n distinct x-coordinates, each of them may be mapped to a tuple, and
each unique tuple appears 3 times in C). We derive that this scenario
gives us at most 3 + 3s + 3n < 3s + 9n edges, which contradicts the fact
that the LCPS is of length 3s + 9n. We conclude that indeed, f(∗) = ∗.

2. From the last item it follows that each x-coordinate xi is mapped by f to
some tuple tj . Since each unique tuple appears exactly 3 times in C, and
there are n distinct x-coordinates, then there are at most 3n (x, t)-type
edges. Now, since the number of (∗, ∗)-type edges is bounded by 3(s+2n)
(the number of ∗ symbols in each string), we conclude that in order to
reach length 3s + 9n, we require the number of (∗, ∗)-type edges to be
exactly 3(s + 2n) = 3s + 6n, and the number of (x, t)-type edges to be
exactly 3n.

3. Since the number of (∗, ∗)-type edges is 3s + 6n, and no two edges can
intersect each other (since it is a CPS graph), the only way to obtain this
number of edges is by mapping every ∗ at some location i in B to the ∗
at the respective location i in C.

4. First of all, notice that an (x, t)-type edge emanating from a specific seg-
ment in B cannot go to other than its respective segment in C, otherwise
it would result in the loss of (∗, ∗)-type edges, which would contradict
Item 3. In each segment of B, there are n distinct x-coordinates. In each
segment of C, each unique tuple appears once. Therefore, each segment
can contribute at most n (x, t)-type edges, and must contribute exactly
n of those, otherwise we would not reach the target length. Finally, each
non-vertical (x, t)-type edge emanating from Segment 1 of B would re-
sult in the loss of (∗, ∗)-type edges. We conclude all (x, t)-type edges in
Segment 1 of B are vertical and therefore go to symbols in Segment 1 of
C.

5. First notice that an edge emanating from some block BB
yi

cannot go to
other than the block BC

yi
; the opposite would result in losing (∗, ∗)-type

edges. We proceed to show that there is at most a single edge from each
block. Assume by contradiction that there are two edges from BB

yi
to BC

yi
,

and let them be (xa, tc) and (xb, td). Assume w.l.o.g. that xb appears
right of xa in BB

yi
. Since a unique tuple can appear at most once in BC

yi
,

then obviously tc 6= td. It follows that also xa 6= xb (since f is a proper
function). Notice that x(tc) = xa and x(td) = xb (in words, both edges
must be from an x-value to a tuple having this value as its x-coordinate),
otherwise we would lose one of the n vertical (x, t)-type edges in Segment 1,
which always map a value to a tuple having it as its x-coordinate. However,

7

since xb appears right of xa and xa 6= xb, it follows that in BC
yi

, the tuples
for which xb is the x-coordinate appear left of the tuples for which xa is
the x-coordinate. In particular, td is left of tc in BC

yi
. We conclude that the

two edges intersect, which contradicts the fact that this is a CPS graph.
The proof for BB

zj
and BC

zj
is similar. We have just proved that each BB

yi

(resp. BB
zj

) block contributes at most a single edge, but since we require
n edges from Segment 2 (resp. Segment 3) in order to obtain the target
length, we conclude that each such block contributes exactly one edge.

It remains to show that the reduction described is correct:

Claim 2. (X, Y, Z, S) ∈ 3DM if and only if (B, C, 3s + 9n) ∈ CPS.

Proof. We prove both directions:

(only if) Given a subset S′ ⊆ S, |S′| = n, which covers each element of X, Y ,
or Z exactly once (i.e., S′ is a perfect matching), we determine the respec-
tive I, J sequences by describing a CPS graph: for each i = 1, . . . , 6s+6n:

1. If bi = ci = ∗, then map bi to ci.

2. Otherwise, ci is some tuple in S. If it also holds that ci ∈ S′, then:

(a) If i is a location in Segment 1, map bi to ci.
(b) If i is a location in Segment 2, then ci appears as a symbol in

the block BC
y(ci)

, and therefore x(ci) appears as a symbol bj in
BB

y(ci)
. Therefore, map bj to ci.

(c) If i is a location in Segment 3, the argument is similar, only this
time with BC

z(ci)
and BB

z(ci)
respectively.

Claim 3. The above scheme yields a CPS graph and therefore a CPS of
length 3s + 9n.

Proof. First notice that the mappings of the form (∗, ∗) actually define
that f(∗) = ∗ and contribute 3s + 6n edges. Since they are all vertical,
they do not intersect with each other. Since all other edges in Segment 1
are also vertical (i.e., are of the form (bi, ci)), they do not intersect with
the above edges or each other. In addition, since S′ is a matching, each
unique xi value is mapped to a unique tuple denoted t(xi) having xi it
as its x-coordinate value. Hence it defines by this that f(xi) = t(xi) for
i = 1, . . . , n. Since |S′| = n, we conclude that this has contributed another
n edges. Finally, at each BB

yi
block, we make a single mapping to a value

in BC
yi

(because S′ is a matching, and all tuples in BC
yi

share the same
y-coordinate, and in addition a unique tuple can appear at most once in
BC

yi
). Notice that mappings in these blocks are consistent with mappings

in Segment 1, and therefore agree with the definition of f made before.
The argument for BB

zj
and BC

zj
is similar. Finally, since each BB

yi
or BB

zj

8

block contributes a single edge, we conclude that those blocks contributed
2n edges all together, none of them intersects with other edges. It follows
that the constructed graph is a CPS graph with 3s+9n edges and therefore
the claim follows.

We thus conclude that (B, C, 3s + 9n) ∈ CPS.

(if) Assume that (B, C, 3s + 9n) ∈ CPS, i.e., B, C have a common param-
eterized subsequence of length 3s + 9n, and consider the corresponding
CPS graph and the bijection f . By Item 4 of the first claim, each (x, t)-
type edge in Segment 1 is vertical and therefore agrees with the map-
ping of each unique xi to a unique tuple tj for which x(tj) = xi. De-
fine S′ = {tj | ∃xi, f(xi) = tj}. Since all tuples sharing the same y-
coordinate (resp. z-coordinate) appear in the same BC

y (resp. BC
z) block,

and by Item 5 such block contributes a single edge (which agrees with
the mappings defined by the edges in Segment 1, since f is a bijection),
we conclude each unique y-coordinate (resp. z-coordinate) is covered, and
furthermore covered exactly once by S′. We conclude that S′ is a perfect
matching and therefore (X, Y, Z, S) ∈ 3DM.

3DM ∈ NPC, CPS is trivially in NP, and the above reduction clearly can be
performed in polynomial time. We therefore conclude CPS ∈ NPC. Therefore
if LCPS admits a polynomial-time algorithm, then P = NP.

6 Approximating LCMS

Recall that LCMS is the specific case of the LCPS problem where Σ = ∅. For a
given parameter λ > 0, we provide an O(n2λ2+1m)-time algorithm, ALCMS

λ , for
which, for two strings B and C of lengths n and m respectively, |ALCMS

λ (B, C)| ≥
λ
√
|OPT(B,C)|, where OPT(B,C) denots the optimal solution.
First, some notation: for a string S, let ΠS = {a ∈ Π | a appears in S}.

Given some alphabet set Γ ⊆ Σ ∪ Π, we denote by SΓ the string S with all
symbols not from Γ deleted, while, for symbols not deleted, preserving their
original location in S. In other words, we keep aside each symbol in SΓ its
original location in S. We will refer to this location as the symbol’s effective
location. For our two strings B and C, let πmin = min{|ΠB |, |ΠC |}. Finally,
let OPT(B,C) = (I∗, J∗) be the optimal solution, and let I∗ = 〈i∗1, . . . , i∗t 〉 and
J∗ = 〈j∗1 , . . . , j∗t 〉. We define π∗ to be the number of distinct symbols which
appear in BI∗ (equivalently, in CJ∗ ; by the problem properties, it is the same).

6.1 The Algorithm

Algorithm 1 utilizes the fact that two strategies for the LCMS problem are
available: for the first, notice that both |ΠB | ≥ πmin and |ΠC | ≥ πmin by the

9

Algorithm 1: ALCMS
λ (B, C)

calculate the values |ΠB |, |ΠC |;1

πmin ← min{|ΠB |, |ΠC |};2

foreach possible Π′ ⊆ ΠB and Π′′ ⊆ ΠC , such that |Π′| = |Π′′| = λ2 do3

construct the strings BΠ′ , CΠ′′ ;4

run N (BΠ′ , CΠ′′);5

choose Π′, Π′′ which yielded maximal result, and let k be the length of6

the resulting solution;
if k ≥ πmin then7

construct the ascending sequences I = 〈i1, . . . , ik〉 and J = 〈j1, . . . , jk〉8

of effective locations in BΠ′ and CΠ′′ , respectively, chosen by the
näıve algorithm;

else9

k ← πmin;10

choose an ascending sequence I = 〈i1, . . . , ik〉 such that i`11

(` = 1, . . . , k) is the first (i.e., leftmost) occurrence of the symbol bi`

in B;
choose an ascending sequence J = 〈j1, . . . , jk〉 such that j`12

(` = 1, . . . , k) is the first (i.e., leftmost) occurrence of the symbol cj`

in C;
return (I, J);13

definition of πmin. We can therefore create sequences I, J for which |I| = |J | =
πmin, by mapping the `-th unique symbol which appears in B, to the `-th unique
symbol which appears in C, for ` = 1, . . . , πmin. For the second strategy, assume
we know the λ2 symbols most frequent in BI∗ , and the λ2 symbols most frequent
in CJ∗ . Running the näıve algorithm on the two strings, wherein all symbols
not from the λ2 most frequent are deleted, will yield a solution of length at
least |OPT(B,C)|

π∗/λ2 (since if we partition ΠBI∗ to π∗/λ2 sets, each of size λ2, one

of them must give us length of at least |BI∗ |
π∗/λ2 = |OPT(B,C)|

π∗/λ2 when running the
näıve algorithm on the strings induced by its symbols only). Since we do not
know ΠBI∗ , we test every possible combination of λ2 symbols in both strings and
choose the combination yielding the maximal result. Finally, our approximation
algorithm chooses the better of the two strategies.

6.2 Analysis

Theorem 3. Given a parameter λ > 0, ALCMS
λ is an O(n2λ2+1m)-time approx-

imation algorithm for LCMS, such that |ALCMS
λ (B, C)| ≥ λ

√
|OPT(B, C)|.

Proof. We provide the approximation factor and the running-time analysis:

10

Approximation. From the discussion above, the algorithm returns sequences
of length max{πmin, |OPT(B,C)|

π∗/λ2 }. Notice that:

λ2|OPT(B, C)| = π∗ · |OPT(B, C)|
π∗/λ2

(6)

≤ min{|ΠB |, |ΠC |} · |OPT(B,C)|
π∗/λ2

(7)

= πmin · |OPT(B, C)|
π∗/λ2

, (8)

where (7) is true because π∗ is bounded by min{|ΠB |, |ΠC |} and (8) is true by
definition. We therefore conclude that max{πmin, |OPT(B,C)|

π∗/λ2 } ≥ λ
√
|OPT(B, C)|.

Since |ALCMS
λ (B,C)| = max{πmin, |OPT(B,C)|

π∗/λ2 }, the approximation factor fol-
lows.

Running-Time. Step 1 of the algorithm can be done efficiently by sorting
both strings according to the symbols of the alphabet. Step 11 and Step 12 can
be efficiently executed by (a) leaving only one copy of each unique symbol in the
two sorted strings, and (b) re-sort the sorted strings, this time using the indices
as the keys by which the sorting is done. Since there are

(|ΠB |
λ2

) ≤ nλ2
options

for Π′, and
(|ΠC |

λ2

) ≤ nλ2
options for Π′′, and running the näıve algorithm costs

O(nm), we conclude that the running-time is bounded by O(nλ2 · nλ2 · nm) =
O(n2λ2+1m).

7 Approximating LCPS

For a given parameter λ > 0, we provide an O(n4λ2+1m)-time algorithm,
ALCPS

λ , for which, for two strings B and C of lengths n and m respectively,
|ALCPS

λ (B, C)| ≥ min{λ
√
|OPT(B, C)|, 1

2 |OPT(B,C)|}.

7.1 The Algorithm

Note that almost all notation remains the same, except that this time, (I∗, J∗)
is the solution returned by OPT(BΠ, CΠ) (instead of OPT(B, C), as before).
Again, I∗ = 〈i∗1, . . . , i∗t 〉 and J∗ = 〈j∗1 , . . . , j∗t 〉. π∗ is defined as before to be the
number of distinct symbols which appear in BI∗ (or equivalently, in CJ∗).

Algorithm 2 utilizes the fact that this time three strategies for the LCPS
problem are available: while the first two remain the same as before—and thus,
actually work now on BΠ and CΠ—the third corresponds to BΣ and CΣ: we
can simply run the ordinary LCS algorithm on BΣ and CΣ, thus obtaining a
legal CPS. As before, our approximation algorithm will choose the best of the
three.

11

Algorithm 2: ALCPS
λ (B,C)

construct the strings BΠ, CΠ;1

(I ′, J ′) ← ALCMS√
2λ

(BΠ, CΠ);2

construct the strings BΣ, CΣ;3

D ← LCS(BΣ, CΣ); /* assume D = d1 . . . dk */4

if |(I ′, J ′)| ≥ |D| then return (I ′, J ′);5

else6

construct the ascending sequences I ′′ = 〈i1, . . . , ik〉 and7

J ′′ = 〈j1, . . . , jk〉 of effective locations in BΣ and CΣ, respectively,
such that bi`

= cj`
= d` (` = 1, . . . , k);

return (I ′′, J ′′);8

7.2 Analysis

Theorem 4. Given a parameter λ > 0, ALCPS
λ is an O(n4λ2+1m)-time approx-

imation algorithm for LCPS, such that

|ALCPS
λ (B, C)| ≥ min{λ

√
|OPT(B,C)|, 1

2
|OPT(B, C)|} .

Proof. We provide the approximation factor and the running-time analysis:

Approximation.
√

2λ was used as the parameter when running ALCMS on
BΠ and CΠ, and therefore ALCMS√

2λ
returned a max{πmin, |OPT(BΠ,CΠ)|

π∗/2λ2 }-length
solution. It follows that the entireALCPS

λ algorithm returned a solution of length
max{πmin, |OPT(BΠ,CΠ)|

π∗/2λ2 , |LCS(BΣ, CΣ)|}. Notice that:

2λ2|OPT(B, C)| ≤ 2λ2|OPT(BΠ, CΠ)|+ 2λ2|LCS(BΣ, CΣ)| (9)

= π∗ · |OPT(BΠ, CΠ)|
π∗/2λ2

+ 2λ2|LCS(BΣ, CΣ)| (10)

≤ πmin · |OPT(BΠ, CΠ)|
π∗/2λ2

+ 2λ2|LCS(BΣ, CΣ)| , (11)

where (9) is true because |OPT(B, C)| ≤ |OPT(BΠ, CΠ)| + |LCS(BΣ, CΣ)|
(since symbols from Π in the optimal solution cannot contribute more than
|OPT(BΠ, CΠ)|, and likewise, symbols from Σ in the optimal solution cannot
contribute more than |LCS(BΣ, CΣ)|), and (11) is true due to the same expla-
nation of (7–8). We conclude that πmin · |OPT(BΠ,CΠ)|

π∗/2λ2 + 2λ2|LCS(BΣ, CΣ)| ≥
2λ2|OPT(B, C)| and therefore

max
{

πmin · |OPT(BΠ, CΠ)|
π∗/2λ2

, 2λ2|LCS(BΣ, CΣ)|
}
≥ λ2|OPT(B, C)| . (12)

We can therefore split to cases:

12

1. If 2λ2|LCS(BΣ, CΣ)| ≥ πmin · |OPT(BΠ,CΠ)|
π∗/2λ2 , we get that |LCS(BΣ, CΣ)| ≥

1
2 |OPT(B,C)|.

2. Otherwise, πmin · |OPT(BΠ,CΠ)|
π∗/2λ2 > 2λ2|LCS(BΣ, CΣ)|. Since It follows that

πmin · |OPT(BΠ,CΠ)|
π∗/2λ2 ≥ λ2|OPT(B, C)|, in this case we finally conclude that

max{πmin, |OPT(BΠ,CΠ)|
π∗/2λ2 } ≥ λ

√
|OPT(B, C)|.

Summing up the two cases, we get:

max
{

πmin,
|OPT(BΠ, CΠ)|

π∗/2λ2
, |LCS(BΣ, CΣ)|

}

≥ min
{

λ
√
|OPT(B, C)|, 1

2
|OPT(B,C)|

}
. (13)

Since |ALCPS
λ (B,C)| = max{πmin, |OPT(BΠ,CΠ)|

π∗/2λ2 , |LCS(BΣ, CΣ)|}, the approxi-
mation factor follows.

Running-Time. The running-time is dominated by the use of ALCMS√
2λ

as a

sub-procedure. Since it is executed on BΠ and CΠ with
√

2λ as the parameter,
its running-time (and therefore the running-time of the entire algorithm) is
O(n2(

√
2λ)2+1m) = O(n4λ2+1m).

8 Conclusions

We have defined the very natural LCPS problem, proven its NP-hardness, and
provided approximation algorithms for the general and a more specific case.
The obvious problem remains to devise better approximation algorithms for the
problem, or to prove their nonexistence.

References

[1] A. Amir, M. Farach, and S. Muthukrishnan. Alphabet dependence in pa-
rameterized matching. Inf. Process. Lett., 49(3):111–115, 1994.

[2] B. S. Baker. Parameterized pattern matching by boyer-moore-type algo-
rithms. In SODA, pages 541–550, 1995.

[3] B. S. Baker. Parameterized pattern matching: Algorithms and applications.
J. Comput. Syst. Sci., 52(1):28–42, 1996.

[4] B. S. Baker. Parameterized duplication in strings: Algorithms and an
application to software maintenance. SIAM J. Comput., 26(5):1343–1362,
1997.

[5] B. S. Baker. Parameterized diff. In SODA, pages 854–855, 1999.

13

[6] R. Cole and R. Hariharan. Faster suffix tree construction with missing
suffix links. In STOC, pages 407–415, 2000.

[7] F. Ferragina and R. Grossi. The string b-tree: A new data structure for
string search in external memory and its applications. J. ACM, 46(2):236–
280, 1999.

[8] C. Hazay, M. Lewenstein, and D. Sokol. Approximate parameterized match-
ing. ACM Transactions on Algorithms, 3(3), 2007.

[9] C. Hazay, M. Lewenstein, and D. Tsur. Two dimensional parameterized
matching. In Combinatorial Pattern Matching, 16th Annual Symposium,
CPM 2005, volume 3537 of Lecture Notes in Computer Science, pages 266–
279. Springer, 2005.

[10] J. W. Hunt and T. G. Szymanski. A fast algorithm for computing longest
subsequences. Commun. ACM, 20(5):350–353, 1977.

[11] T. Jiang and M. Li. On the approximation of shortest common superse-
quences and longest common subsequences. SIAM J. Comput., 24(5):1122–
1139, 1995.

[12] R. M. Karp. Reducibility among combinatorial problems. In Complexity
of Computer Computations, pages 85–103. Plenum Press, 1972.

[13] S. R. Kosaraju. Faster algorithms for the construction of parameterized
suffix trees (preliminary version). In FOCS, pages 631–637, 1995.

[14] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions,
and reversals. Soviet Physics Doklady, 10:707–710, 1966.

[15] D. Maier. The complexity of some problems on subsequences and superse-
quences. J. ACM, 25(2):322–336, 1978.

[16] W. J. Masek and M. Paterson. A faster algorithm computing string edit
distances. J. Comput. Syst. Sci., 20(1):18–31, 1980.

[17] E. W. Myers. An o(nd) difference algorithm and its variations. Algorith-
mica, 1(2):251–266, 1986.

[18] N. Nakatsu, Y. Kambayashi, and S. Yajima. A longest common subse-
quence algorithm suitable for similar text strings. Acta Inf., 18:171–179,
1982.

[19] R. A. Wagner and M. J. Fischer. The string-to-string correction problem.
J. ACM, 21(1):168–173, 1974.

14

