
Range Non-overlapping Indexing
and Successive List Indexing

Orgad Keller, Tsvi Kopelowitz, and Moshe Lewenstein?

Department of Computer Science, Bar-Ilan University, Ramat-Gan 52900, Israel
{kellero, kopelot, moshe}@cs.biu.ac.il

Abstract. We present two natural variants of the indexing problem:
In the range non-overlapping indexing problem, we preprocess a given
text to answer queries in which we are given a pattern, and wish to find a
maximal-length sequence of occurrences of the pattern in the text, such
that the occurrences do not overlap with one another. While efficiently
solving this problem, our algorithm even enables us to efficiently perform
so in substrings of the text, denoted by given start and end locations.
The methods we supply thus generalize the string statistics problem [4,
5], in which we are asked to report merely the number of non-overlapping
occurrences in the entire text, by reporting the occurrences themselves,
even only for substrings of the text.
In the related successive list indexing problem, during query-time we
are given a pattern and a list of locations in the preprocessed text. We
then wish to find a list of occurrences of the pattern, such that the ith
occurrence is the leftmost occurrence of the pattern which starts to the
right of the ith location given by the input list.
Both problems are solved by using tools from computational geometry,
specifically a variation of the range searching for minimum problem of
Lenhof and Smid [12], here considered over a grid, in what appears to be
the first utilization of range searching for minimum in an indexing-related
context.

1 Introduction

Given a text string T = t1 . . . tn and a pattern string P = p1 . . . pm, in the pattern
matching problem [11] we wish to report all the occurrences of P in T . Its online
counterpart, the indexing problem, is one of the most important paradigms in
searching: the idea is to preprocess a text and construct a mechanism that will
later provide answers to queries of the form “does a pattern P occur in the
text” in time proportional to the length of the pattern rather than the text.
In addition, if we want to return the occurrences themselves, the time will be
proportional to the length of the pattern and the number of actual occurrences.

The suffix tree [15, 14, 7, 13] has proven to be an invaluable data structure
for indexing, using O(n) space, where n is the text length. Algorithms for the
? This work was supported by a German-Israel Foundation (G.I.F.) young scientists

program research grant.

construction of a suffix tree enable O(n) preprocess time when |Σ| is constant
(where Σ is the alphabet set), and O(n log min(n, |Σ|)) time when |Σ| is not. In
fact, the suffix tree can be constructed in linear time even for alphabets drawn
from a polynomially-sized range, see [7].

The size of the alphabet also affects the query time of the suffix tree: given
a pattern P of length m, we can find the set of all occurrences of P in T in
O(m log min(n, |Σ|) + tocc) time for unbounded alphabets, where tocc is the
actual number of occurrences of P in T , or accordingly, O(m + tocc) time for
constant-sized alphabets.

While the search for P yields an unsorted set of occurrences in T , some
may overlap others: a specific location i in the text might participate in sev-
eral different occurrences of P in T . However, sometimes only non-overlapping
occurrences are of importance. Such requirement is of interest in fields such as
pattern recognition, computational linguistics, speech processing, bio-molecular
sequence analysis, code optimization and data compression [4]. For instance, we
might want to compress a text by replacing each non-overlapping occurrence of
a substring of it with a pointer to a single copy of the substring.

In the string statistics problem [4, 5], we are interested in finding the maximal
number of non-overlapping occurrences of P in the entire text T . The solutions
proposed in [4] and [5] use properties of periodicity in the text and pattern.
However, the methods described there do not report the actual occurrences of
the pattern. In this paper, we present a solution that returns the maximal (sorted
by location) sequence of non-overlapping occurrences of P in T 1. Furthermore,
we generalize it such that it can return the maximal sequence of non-overlapping
occurrences of P in some substring of T , denoted by start and end locations given
alongside the pattern at query time.

In addition, we provide a solution to another problem that incorporates in-
dexing with added location constraints: in the successive list indexing problem,
we are given a list L = 〈i1, . . . , i`〉 of locations in T together with P , and we
wish to find the sequence of occurrences of P in T where the jth occurrence
returned is the leftmost occurrence of P in T that occurs after the ijth location
(if such exists). Other kinds of proximity-related indexing variants (for instance,
finding the single occurrence of the pattern that overlaps the ijth location) can
be solved by using exactly the same method. We also note that the definition of
the matching can be generalized to pattern matching with errors and such [3],
but we leave the discussion for the full version of this paper, and assume for the
rest of the paper the common matching definition.

Solutions to both problems rely heavily on tools taken from the computa-
tional geometry area. In the range searching problem (see survey in [1]), which
is common to this field, we are given a set S of n geometric objects (e.g. points)
in a d-dimensional space, which we store in some data structure. When a query
object Q (e.g. a hyper-rectangle [a1, b1] × · · · × [ad, bd]) is given, we wish to

1 Note that we discuss the indexing variant of this problem. If one would like to solve
non-overlapping pattern matching, then one could use the simple greedy method
discussed in Sect. 5.

return the result of some sort of query on a subset of the points, usually the
subset S ∩Q. A popular variant of range searching is range reporting, in which
we are asked to report all the points which are included in the query range
Q = [a1, b1]× · · · × [ad, bd], i.e. the set S ∩Q itself (see [2]).

While range reporting has been used before in several indexing-related papers
(e.g. [9, 3, 8]), to the best of our knowledge, this is the first indexing-related work
using a variant of range searching for minimum of Lenhof and Smid [12], itself a
generalization of a problem presented by Gabow et al. [10]. In Lenhof and Smid’s
variant, we are given a set of n d-dimensional points, and query them with ranges
of type [a1, b1]×· · ·×[ad−1, bd−1]×[ad,∞], wishing to find a single point in range
with minimal dth coordinate. When d = 2, they obtain the following bounds:
O(n log n log log n) expected preprocessing time, O(n log n) space, and O(log n)
query time.

We modify the solution from [12] to work on a 2-dimensional grid, which suits
our purposes. We find it more appropriate to call this variant the range successor
query on a grid problem. We obtain the following bounds: O(n log n log log n)
expected preprocessing time, O(n log n) space, and O(log log n) worst-case query
time.

The rest of this paper is organized as follows: in Sect. 2 we provide some for-
mal definitions of our problems. In Sect. 3 we supply an outline of the method we
use for the range successor query on a grid problem. In Sect. 4 we solve the succes-
sive list indexing problem. In Sect. 5 we finally solve the range non-overlapping
indexing problem, and in Sect. 6 we present some concluding remarks.

1.1 Notations

For two integers i ≤ j, denote by [i, j] the set {i, . . . , j}. For an integer u, denote
by [u] the set [0, u− 1].

Given a string S, denote by |S| the length of S. An integer i is a location in
S if i = 1, . . . , |S|. Given a string T = t1 . . . tn (i.e. |T | = n, hereafter the text),
a suffix of T is a string of the form ti . . . tn, for some location i. Given another
string P = p1 . . . pm (hereafter the pattern), a location i in T is an occurrence
of P in T if ti . . . ti+m−1 = p1 . . . pm = P . Two occurrences i, j of P in T are
said to be non-overlapping if |j − i| ≥ m. The suffix tree of T is essentially a
compressed trie of the suffixes of T , used as a data structure to efficiently find
the occurrences of P in T .

2 Problem Definitions

The successive list indexing problem is defined as follows:
Input: a text T = t1 . . . tn over alphabet Σ.
The text will be preprocessed to answer the following:
Query: a pattern P = p1 . . . pm over Σ, and a list L = 〈i1, . . . , i`〉 of locations
in T .
Output: the `-length list of occurrences of P in T where the jth occurrence

is the leftmost (i.e. minimal) occurrence of P in T that appears after the ijth
location (if such exists).

A simpler version of this problem is the successive indexing problem that is
defined as follows:
Input: a text T = t1 . . . tn over alphabet Σ.
The text will be preprocessed to answer the following:
Query: a pattern P = p1 . . . pm over Σ, and a location i in T .
Output: an occurrence i′ ≥ i of P (i.e. ti′ . . . ti′+m−1 = P) in T for which i′ is
minimal (if such exists).

The range non-overlapping indexing problem is defined as follows:
Input: a text T = t1 . . . tn over alphabet Σ.
The text will be preprocessed to answer the following:
Query: a pattern P = p1 . . . pm over Σ, and two locations i ≤ j in T .
Output: an ascending sequence L = 〈i1, . . . , ik〉 of non-overlapping occurrences
of P in T for which i ≤ i1 and ik ≤ j (alternatively we can say we require L to
be a subsequence of the sorted set [i, j]) and k is maximal. Formally, we require
that for each j = 1, . . . , k, tij . . . tij+m−1 = P and that for each j = 1, . . . , k− 1,
ij+1 − ij ≥ m.

The (two-dimensional) range successor query on a grid problem is defined as
follows:
Input: a set S = {(x1, y1), . . . , (xn, yn)} of n points on an [n]× [n] grid.
Given this input, we will efficiently preprocess it to answer the following queries:
Query: a triplet (x′, x′′, y).
Output: a specific point (xi, yi) ∈ S ∩ ([x′, x′′]× [y, n− 1]) whose y-coordinate
(i.e. yi) is minimal. In other words, (xi, yi) is the point with minimal value yi

corresponding to the following conditions:

1. yi ≥ y.
2. x′ ≤ xi ≤ x′′.

3 Range Successor Query on a Grid

Both solutions for the successive list indexing and range non-overlapping index-
ing rely heavily on an efficient solution to the range successor query on a grid
problem. As mentioned before, this problem, in its version where the points’
coordinates are not on a grid (meaning, they are not necessarily integers and are
not drawn from a restricted universe [u]), and for which the points can also be
of dimension greater than 2, was solved by Lenhof and Smid [12]. In their defini-
tion, given n points in a d-dimensional space, the query object is a d-dimensional
range [a1, b1] × · · · × [ad−1, bd−1] × [ad,∞] in which we wish to find the point
having the minimal dth coordinate. They issued the problem with the name
“range searching for minimum”, which was used prior by Gabow et al. [10] to
indicate the more particular problem in which the query object is of the form
[a1, b1]× · · · × [ad−1, bd−1]× [−∞,∞]. Again, the goal there is to find the point
in the range having the minimal dth coordinate. As Lenhof and Smid’s problem
is actually the problem of finding the successor of a value, with added range

restrictions, we find it more appropriate to name it (in our context) the range
successor query on a grid problem.

In the solution presented in [12], they used a rank space reduction in order
to reduce the given point set in IRd to a point set on an [n]d grid. As a result,
the query time for the two-dimensional case suffered from an additive O(log n)
time. However, when we solve the problem on an [n]× [n] grid, we do not need
the rank space reduction. Unfortunately, in [12] there is no complete analysis of
the query time in absence of the rank space reduction. It can be shown that the
query time in such a case is worst-case O(log log n). We leave the full details for
the full version, as it requires a complete description of the solution presented
in [12].

We thus obtain the following:

Theorem 1. The range successor query on an [n]×[n] grid problem can be solved
with O(n log n) space and O(log log n) query time, using O(n log n log log n) ex-
pected preprocess time.

4 Successive List Indexing

We now present a solution for the successive indexing problem which applies a
reduction to the range successor query problem. Later, we will explain how to
generalize the solution for solving the successive list indexing problem.

Let T = t1 . . . tn be a text over alphabet Σ. When given a pattern P =
p1 . . . pm over Σ and a location i in T , we wish to find the leftmost occurrence
of P in T that still starts to the right of i. Formally, we wish to find the minimal
i′ ≥ i such that ti′ . . . ti′+m−1 = P , if such exists.

We first construct the suffix tree of T , denoted ST(T). In order to prevent
the effect of unbounded alphabets on the suffix tree, we can present hashing, as
depicted in the following:

Theorem 2. There exists a randomized suffix tree, which can be constructed in
expected O(n) time (where n is the length of the text), and in which queries can
be made in worst-case O(m + tocc) time (where m is the length of the pattern,
and tocc is the actual number of occurrences of the pattern in text), for general
alphabets.

Proof. Note the construction and query times for constant size alphabets are
O(n) and O(m+tocc) respectively. In addition, note that the number of children
of any node in the suffix tree is bounded by both n+1 and |Σ|. Hence, we obtain
a min(n + 1, |Σ|) bound on the number of children of a given node. Thus, if for
every node in the suffix tree we maintain pointers to its children in a balanced
search tree, the multiplicative O(log min(n, |Σ|)) factor comes from the need to
search or to insert elements to balanced search trees. Substituting this balanced
search tree with a dynamic hash table (e.g. of Dietzfelbinger et al. [6], supporting
worst-case O(1) query time and amortized expected O(1) insertion time), using
as before the symbols of the alphabets associated with the edges as keys, would

eliminate that factor, thus giving us an expected O(n) construction time, and
worst-case O(m + tocc) query time (worst-case, since in query-time we do not
modify the tree and therefore do not insert elements to those hash tables). ut

Note that besides the obvious disadvantage of introducing randomness, an-
other disadvantage of the randomized suffix tree is the fact that now, given a
node, the order of its children cannot be efficiently derived from the structure
used to hold the pointers to them. As this order eventually determines the order
of the leaves of the suffix tree, which is crucial to us during preprocess, suffix
trees built throughout this paper will hold the pointers to the children of a given
node in both a balanced search tree and a hash table. During query time, since
the aforementioned order is of no importance to us, we will use the hash tables
option to efficiently navigate through the tree.

4.1 Algorithm Outline

In the suffix tree, each leaf l is associated with a suffix of T and is therefore
marked with an integer y(l) which is the start location of that suffix. Assume
we go over the leaves of ST(T) in a left-to-right manner linking them to create
a linked list (by using a depth first search). Note that now if we traverse the
list, we actually traverse the leaves according to the lexicographical order of the
suffixes they are associated with. For a leaf l, let x(l) be the position of l in
the linked list. It immediately follows that x(l) is the lexicographical rank of the
suffix associated with l. Equivalently: If we lexicographically sort all suffixes of T
in an ascending order, then the x(l)th suffix is the one associated with l. Setting
x(l) for each l can be done by going over the list, marking each leaf l with its
position in the list.

When given a pattern P = p1 . . . pm, we can find all the occurrences of P in
T , by traversing ST(T) from the root downwards according to the symbols in P ,
until we either conclude that P does not occur in T (in the case we got ‘stuck’
in the tree, figuratively speaking: this is the case where the next symbol of the
pattern cannot be found in our current location in the tree), or that we conclude
the traversal at a node v in ST(T). In the latter, all the leaves in the subtree
rooted at v correspond to occurrences of P in T . Denote the subtree rooted at
v as Tv. Hence the set L′ = {y(l) | l is a leaf in Tv} is the set of all occurrences
of P in T .

Note that for the node v mentioned above, the leaves of Tv appear consec-
utively in the linked list of leaves. Furthermore, since for each leaf l, x(l) is its
position in the list, the leaves of Tv form a range [x(l′v), x(l′′v)] (where l′v and l′′v
are the leftmost and rightmost leaves in Tv, respectively). It immediately fol-
lows that for a leaf l, l is a leaf in Tv iff x(l) ∈ [x(l′v), x(l′′v)]. In other words:
x(l) ∈ [x(l′v), x(l′′v)] iff P appears in T at location y(l).

Consider the leaf f for which x(f) ∈ [x(l′v), x(l′′v)] and y(f) is minimal such
that y(f) ≥ i. By the problem definition, y(f) is exactly what we need to find
and return. Now consider the set {(x(l), y(l)) | l is a leaf in ST(T)}. Clearly, this
is a set of n + 1 points on an [n + 1]× [n + 1] grid. Since the point (x(f), y(f))

Algorithm 1: Successive indexing preprocess
Input: a text T = t1 . . . tn.
construct ST(T); /* assume the field y(l) is set for any leaf l by the1

suffix tree algorithm */

traverse ST(T) and set the field x(l) for each leaf l;2

traverse ST(T) using DFS :3

foreach node u do4

store the values x(l′u) and x(l′′u) in u; /* l′u and l′′u are the leftmost5

and rightmost leaves of Tu, respectively */

preprocess the set {(x(l), y(l)) | l is a leaf in ST(T)} for range successor queries6

on an [n + 1]× [n + 1] grid;

Algorithm 2: Successive indexing query
Input: a pattern P = p1 . . . pm and an integer 1 ≤ i ≤ n.
traverse ST(T) starting from the root, according to the symbols in P :1

if stuck then return “no occurrences” else let v be the node we reached (if2

we stopped at a node) or the node immediately below the edge we are at (if
we stopped on an edge);

if the range successor query for (x(l′v), x(l′′v), i) yields a result (x′, y′) then3

return y′;4

else return “no occurrence”;5

is exactly the y-axis successor of i in the range [x(l′v), x(l′′v)], we can find and
return y(f) by using a single range successor query.

The algorithm for the successive indexing problem thus immediately follows,
and is presented as Algorithms 1 (preprocess) and 2 (query).

4.2 Analysis

We have obtained the following:

Theorem 3. The successive indexing problem can by solved with O(n log n)
storage and O(m + log log n) query time, using O(n log n log log n) expected pre-
process time.

Proof. The correctness of the proposed algorithm follows immediately from the
discussion above. Note that for the values x(l), y(l) for each leaf l in ST(T), it
holds that x(l), y(l) ∈ [n + 1]. The space used is therefore:

1. O(n) for the suffix tree itself.
2. O(n log n) for the data structure supporting range successor queries.

We conclude we use overall O(n log n) storage space.
The query time consists of:

1. O(m) in order to find node v.

2. O(log log n) time for the single range successor query.

Summing up, the query time is worst-case O(m + log log n).
The preprocess time consists of:

1. O(n log min(n, |Σ|)) in order to construct the suffix tree with both a balanced
search tree and a hash table in each node.

2. O(n) for each traversal on the suffix tree.
3. O(n log n log log n) expected time for preprocessing in order to answer future

range successor queries.

We conclude we use overall expected O(n log n log log n) time for preprocess. ut

4.3 Solving the Successive List Indexing Problem

Note that after answering the query for some P and i, if we wish to answer this
query for the same pattern P and a different location j, we can immediately
perform the range successor query and return the result, since we have already
found and thus know the x-axis range associated with P . Thus, we have obtained
the following:

Theorem 4. The successive list indexing problem can be solved with O(n log n)
storage and O(m+` log log n) query time, using O(n log n log log n) expected pre-
process time.

Proof. Given an `-length list L of locations in T , we can use the solution for
the successive indexing problem, but repeat the range successor query for every
location given in the queried list. ut

5 Range Non-overlapping Indexing

We now present a solution for the range non-overlapping indexing problem.
Let T = t1 . . . tn be a text over alphabet Σ. When given a pattern P =

p1 . . . pm over Σ, and two locations i ≤ j in T , denote by L′ the ascending
sequence of locations in T where an occurrence of P in T starts. Denote by L′′

the sequence of locations in T which (1) correspond to occurrences of P in T ,
and (2) are in the range [i, j]. Clearly, L′′ is a subsequence of L′. We wish to
find a subsequence L = 〈i1, . . . , ik〉 of L′′ which corresponds to non-overlapping
occurrences of P in T in the range [i, j], with maximal k. Notice that L is a
subsequence of L′′ which is a subsequence of L′. Formally, we require that:

1. i ≤ i1.
2. ik ≤ j.
3. For each d = 1, . . . , k, tid

. . . tid+m−1 = P .
4. For each d = 1, . . . , k − 1, id+1 − id ≥ m.

Consider the following greedy method for constructing L: we go over ti . . . tj+m−1

by using one of the linear pattern matching algorithms (for instance [11]) which
scan the text and return occurrences of P in ti . . . tj+m−1 in an ascending order of
positions. We choose the first occurrence the algorithm has outputted to be the
first element in L. Note that the occurrence we have just chosen is the leftmost
occurrence of P in ti . . . tj+m−1. We then proceed to choose every first occurrence
outputted by the algorithm that does not overlap with the last occurrence we
have chosen for L. It is easy to see that for the resulting sequence L = 〈i1, . . . , ik〉,
it holds that for each d = 2, . . . , k, id is minimal such that tid

. . . tid+m−1 = P
and id − id−1 ≥ m.

Lemma 1. The sequence L is a maximal-length sequence of non-overlapping
occurrences of P in ti . . . tj+m−1.

Proof. Recall that |L| = k and assume by contradiction that L is not maximal,
i.e. there is a sequence of non-overlapping occurrences of P in ti . . . tj+m−1,
denoted H, such that |H| ≥ k+1. For an integer d, denote by Hd the dth element
of H, if such exists. Since the greedy method always chooses the leftmost non-
overlapping occurrence to be included, we can say that for each d = 1, . . . , k,
id ≤ Hd. In particular, ik ≤ Hk. Since H is a sequence of non-overlapping
occurrences, we notice that Hk+1 does not overlap with Hk, and because ik ≤ Hk,
it follows that Hk+1 does not overlap with ik as well. We conclude that the greedy
method should have appended the occurrence Hk+1 to L, which contradicts the
fact that ik is the last element of L. ut

Denote tocc = |L′|, k′′ = |L′′| and recall that |L| = k. The following lemma
tells the relation between the three:

Lemma 2. tocc ≥ k′′ and k′′ ≤ m · k. Furthermore, there exists a text and a
pattern for which k′′ = Θ(m · k).

Proof. tocc ≥ k′′ since L′′ is a subsequence of L′.
L is the maximal set of non-overlapping locations. For two consecutive ele-

ments id, id+1 in L, if there exists an occurrence of P in T at location e such that
id < e < id+1, then the occurrence at e certainly overlaps with the occurrence at
id, otherwise the greedy method would have chosen e instead of id+1. Therefore,
we charge every such occurrence e to id, in order to refrain from counting e twice
(one time for id, and possibly another time for id+1 if it also overlaps with it).
Since for each id there are m− 1 locations id + ` (` = 1, . . . , m− 1) for which if
P appears at, it would overlap with the occurrence at id, the lemma follows.

Finally, if the text is T = an (the symbol a repeated n times), the pattern is
P = am, and the query range is [1, n], it is easy to see that k′′ = Θ(m · k) ut

Assume we first index T by constructing the suffix tree of T , denoted ST(T).
As described in Sect. 4, the suffix tree of T enables us to find all the occurrences
of P in T . Therefore, a naive approach for solving the problem will be, when
given P , to simply find all occurrences of P in T by using this method, sort
them (thus obtaining the sequence L′), choose only those which are in the range

[i, j], and then iterate through them, each time outputting the first location not
overlapping with the last location outputted. However, it is clear the the time
for such a method will be dependant on tocc, which can, as lemma 2 suggests,
be Θ(m · k), which is too large.

Another (slightly better) approach would be to transform the leaves of ST(T)
to points on a grid as described in Sect. 4. Assume we have found the node v
which is described there (by using the methods described there). Recall that
x(l) ∈ [x(l′v), x(l′′v)] iff P appears in T at location y(l). We can therefore recover
the exact set of occurrences of P in T that are in the range [i, j] by conducting
a range reporting query (i.e. searching and reporting all the points in range) of
the range [x(l′v), x(l′′v)]× [i, j] (latest results of range reporting due to Alstrup et
al. [2]). Again, we can sort them (thus obtaining L′′) and then iterate through
them, each time outputting the first location not overlapping with the last loca-
tion outputted. However, it is clear that now we still have a dependency on k′′,
which could be Θ(m ·k). Note that the method of representing the lexicographic
order of the suffixes of a text, and the locations in the text, as two axes of a grid,
used in this paper, was used before by Ferragina [8]. The goal of [8] required per-
forming range reporting queries on a grid, while we use range successor queries
on a grid.

We resort therefore to using a similar method to that which was used to
solve the successive indexing problem in Sect. 4: consider the leaf f for which
x(f) ∈ [x(l′v), x(l′′v)], y(f) ≥ i and y(f) is minimal. If y(f) ≤ j, then y(f) is
the leftmost occurrence of P in ti . . . tj+m−1, so according to the greedy scheme,
we can include it in L. It is clear that y(f) is exactly the occurrence of P in
T successive to i, subject to the requirement that y(f) ≤ j. Suppose such f
exists and therefore we included y(f) in L. We now want to choose the leftmost
occurrence of P in T in the range [i, j] not overlapping with the occurrence
we have just chosen. In other words: we wish to find a leaf l for which x(l) ∈
[x(l′v), x(l′′v)] and y(l) is minimal such that y(f) + m ≤ y(l) ≤ j. Luckily, this is
exactly the occurrence of P in T successive to y(f) + m, adding the constraint
that the occurrence is less than or equal to j. Therefore, this can be solved also
by querying for the y-axis successor of y(f)+m in the x-axis range [x(l′v), x(l′′v)].
We can repeat this process in order to obtain the sequence L as it was defined
by the greedy method.

The algorithm for the range non-overlapping indexing problem immediately
follows, and is described as Algorithms 3 (preprocess) and 4 (query).

5.1 Analysis

Theorem 5. The range non-overlapping indexing problem can by solved with
O(n log n) storage and O(m + k log log n) query time (where k is the maximal
number of non-overlapping occurrences of P in T , that are in the range [i, j]),
using O(n log n log log n) expected preprocess time.

Proof. The preprocess phase is identical to the one for the successive indexing
problem and therefore the space and preprocess time analysis is omitted.

Algorithm 3: Range non-overlapping indexing preprocess
Input: a text T = t1 . . . tn

construct ST(T); /* assume the field y(l) is set for any leaf l by the1

suffix tree algorithm */

traverse ST(T) and set the field x(l) for each leaf l;2

traverse ST(T) using DFS :3

foreach node u do4

store the values x(l′u) and x(l′′u) in u; /* l′u and l′′u are the leftmost5

and rightmost leaves of Tu, respectively */

preprocess the set {(x(l), y(l)) | l is a leaf in ST(T)} for range successor queries6

on an [n + 1]× [n + 1] grid;

Algorithm 4: Range non-overlapping indexing query
Input: a pattern P = p1 . . . pm, and two integers 1 ≤ i ≤ j ≤ n
let L be the empty sequence;1

traverse ST(T) starting from the root, according to the symbols in P :2

if ‘stuck’ then return “no occurrences”;3

else let v be the node we reached (if we stopped at a node) or the node4

immediately below the edge we are at (if we stopped on an edge);
y ← i;5

while the range successor query for (x(l′v), x(l′′v), y) yields a result (x′, y′), for6

which y′ ≤ j do
append y′ to L;7

y ← y′ + m;8

return L;9

The query time consists of:

1. O(m) in order to find node v.
2. O(log log n) time for a successor query to find each element of L, therefore

overall O(k log log n) for all k non-overlapping occurrences.

We conclude we use overall worst-case O(m + k log log n) time. ut

6 conclusions

We have presented solutions for the successive list indexing problem, and the
range non-overlapping indexing problems, by using a tool from computational
geometry — range successor queries on a grid, which, to our best knowledge,
has not been used before in this context. It is conceivable that more indexing
problems can be solved by using the tool of range successor queries on a grid.

References

1. P. Agarwal and J. Erickson. Geometric range searching and its relatives, 1999.

2. S. Alstrup, G. S. Brodal, and T. Rauhe. New data structures for orthogonal range
searching. In IEEE Symposium on Foundations of Computer Science, pages 198–
207, 2000.

3. A. Amir, D. Keselman, G. M. Landau, M. Lewenstein, N. Lewenstein, and
M. Rodeh. Text indexing and dictionary matching with one error. J. Algorithms,
37(2):309–325, 2000.

4. A. Apostolico and F. P. Preparata. Data structures and algorithms for the string
statistics problem. Algorithmica, 15(5):481–494, 1996.

5. G. S. Brodal, R. B. Lyngsø, A. Östlin, and C. N. S. Pedersen. Solving the string
statistics problem in time O(n log n). In ICALP ’02: Proceedings of the 29th
International Colloquium on Automata, Languages and Programming, pages 728–
739, London, UK, 2002. Springer-Verlag.

6. M. Dietzfelbinger, A. R. Karlin, K. Mehlhorn, F. M. auf der Heide, H. Rohnert,
and R. E. Tarjan. Dynamic perfect hashing: Upper and lower bounds. volume 23,
pages 738–761, Philadelphia, PA, USA, 1994. Society for Industrial and Applied
Mathematics.

7. M. Farach. Optimal suffix tree construction with large alphabets. In FOCS ’97:
Proceedings of the 38th Annual Symposium on Foundations of Computer Science
(FOCS ’97), page 137, Washington, DC, USA, 1997. IEEE Computer Society.

8. P. Ferragina. Dynamic text indexing under string updates. J. Algorithms,
22(2):296–328, 1997.

9. P. Ferragina, S. Muthukrishnan, and M. de Berg. Multi-method dispatching: A
geometric approach with applications to string matching problems. In STOC,
pages 483–491, 1999.

10. H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scaling and related techniques
for geometry problems. In STOC ’84: Proceedings of the sixteenth annual ACM
symposium on Theory of computing, pages 135–143, New York, NY, USA, 1984.
ACM Press.

11. D. Knuth, J. H. Morris, and V. Pratt. Fast pattern matching in strings. SIAM
Journal on Computing, 6(2):323–350, 1977.

12. H.-P. Lenhof and M. Smid. Using persistent data structures for adding range re-
strictions to searching problems. RAIRO Theoretical Informatics and Applications,
28:25–49, 1994.

13. E. M. McCreight. A space-economical suffix tree construction algorithm. J. ACM,
23(2):262–272, 1976.

14. E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260,
1995.

15. P. Weiner. Linear pattern matching algorithms. In 14th Annual Symposium on
Switching and Automata Theory, pages 1–11. IEEE, 1973.

