
Finding the Minimum-Weight k-Path?

Avinatan Hassidim??, Orgad Keller, Moshe Lewenstein? ? ?, and Liam Roditty

Department of Computer Science, Bar-Ilan University, Ramat-Gan, Israel
{avinatan,kellero,moshe,liamr}@cs.biu.ac.il

Abstract. Given a weighted n-vertex graph G with integer edge-weights
taken from a range [−M,M], we show that the minimum-weight sim-
ple path visiting k vertices can be found in time Õ(2kpoly(k)Mn2) =
O∗(2kM). If the weights are reals in [1,M], we provide a (1+ε)-approximation
which has a running time of Õ(2kpoly(k)n2(log logM + 1/ε)). For the
more general problem of k-tree, in which we wish to find a minimum-
weight copy of a k-node tree T in a given weighted graph G, under the
same restrictions on edge weights respectively, we give an exact solution
of running time Õ(2kpoly(k)Mn3) and a (1 + ε)-approximate solution
of running time Õ(2kpoly(k)n3(log logM + 1/ε)). All of the above algo-
rithms are randomized with a polynomially-small error probability.

1 Introduction

Given an n-vertex graph G = (V,E) and a parameter k, in the k-path problem
we wish to find a simple path in G consisting of k vertices, if such exists. The
k-path problem can be easily shown to be NP-complete: when k = n, it is ex-
actly the Hamiltonian path problem. While a trivial O∗(nk) solution1 is to try
all
(
n
k

)
combinations of k vertices, better can be obtained; Monien was the first

to show an improvement [14], with an O∗(k!) algorithm. In their seminal result,
Alon, Yuster, and Zwick [2] introduced the color-coding technique. They used it
to present a randomized O∗((2e)k) algorithm for this problem, which can be de-
randomized, replacing the 2e term with a large constant. Their result thus shows
that the logpath problem of determining whether a graph contains a path of
length logn can be solved in polynomial time. Later, two independent results [11,
6] presented randomized O∗(4k) algorithms, again with larger constants when
derandomized, having running times of O∗(16k) [11] and O∗(12.5k) [6].

While these results were combinatorial in nature, the next improvements used
algebraic techniques: Koutis [12] presented an algorithm solving the problem
in O∗(2.83k) time. His method was perfected by Williams [16], reducing the

? A preliminary version of this paper has been presented in [10].
?? Research supported by ISF grant 1241/12 and by GIF Young.

? ? ? Research supported by BSF grant 2010437, a Google Research Award and GIF grant
1147/2011.

1 Here and throughout, the O∗ notation discards all factors that are polynomial in
n, k, and logM from the running time. Similarly, the Õ expressions discard poly-
logarithmic factors.

running time to O∗(2k). This had somewhat closed the gap between the k-path
problem and the best method known for the specific case of finding a Hamiltonian
path in a directed graph, which is O∗(2n) (though the latter is combinatorial in
nature). For undirected graphs, recent results presented O∗(1.657n) [3] and later
O∗(1.657k) [4, 1] running times for Hamiltonian path and k-path, respectively.

It is worthwhile to focus on Koutis’ and Williams’ techniques, as they are
the basis to this paper. They reduce k-path and other problems to the problem
of determining whether a given n-variate polynomial contains a k-multilinear-
monomial (that is, a term which is the multiplication of k distinct variables) in its
sum-product expansion. The problem is then solved by (roughly) evaluating this
polynomial over random values taken from an adequate choice of an algebraic
structure. In a later result [13] they both show that, in the evaluation framework
they use, their technique for finding a k-multilinear-monomial is essentially opti-
mal, as any choice of an algebraic structure for the polynomial evaluation would
require that the elements in this structure have an Ω(2k/k)-sized representation.

One of the most natural generalizations coming to mind, is the minimum-
weight k-path problem: in this scenario, the graph edges are weighted and we wish
to find a k-path having minimum weight in the graph. In [16] this was referred to
as the short cheap tour problem and mentioned that while the O∗(4k) methods
can be easily extended to accommodate for this version, the algebraic methods
do not seem to support such an extension, and left this as an open problem. We
solve this problem for the specific case in which the edge weights are integers
in the range [−M,M], incurring a running time which also has a superlinear
dependency on M . If the weights are reals in [1,M] (or can be normalized to
this range, as is the case if they are in the range [`, h] for 0 < ` < h), we provide
a (1+ε)-approximation which reduces this dependency to log logM . Notice that
by this we conform to the important line of research in recent years, of discussing
variants of distance problems in which edge-weights are integers taken from a
bounded range, see e.g., [18, 7].

Another problem that generalizes k-path is presented in [13]: in the k-tree
problem, given an n-vertex graph G and a k-node tree T , find a copy of T in G.
For a similar generalization of this problem to minimum-weight k-tree, and under
similar restrictions on the edge weights, we show similar exact and approximate
results.

Paper Organization. In Section 2 we provide some preliminaries. Then, in Sec-
tion 3 we show how to find the minimum degree coefficient of a polynomial
containing a multilinear monomial in the other variables, which will serve as a
subroutine in our algorithms. In Section 4, we first present an Õ(2kpoly(k)Mn2)
algorithm for computing the weight of the minimum-weight k-path when edge
weights are integers in [−M,M]. In Section 5, we show how to find the path
itself, incurring an O(k · poly log n) multiplicative overhead for the above al-
gorithm. In Section 6, for the case of real edge-weights in [1,M], we provide a
(1+ε)-approximation algorithm that reduces the dependency on M to log logM ,
by using a technique of careful adaptive scaling of the edge weights. The over-
all running time of this algorithm is Õ(2kpoly(k)n2(log logM + 1/ε)). In Sec-

tion 7 we turn to the k-tree problem, and show similar results: we present
an Õ(2kpoly(k)Mn3) algorithm for finding the minimum-weight k-tree when
edge weights are integers in [−M,M], and for the case the edge-weights are re-
als in [1,M], provide a (1 + ε)-approximation algorithm having running time
Õ(2kpoly(k)n3(log logM + 1/ε)).

2 Preliminaries

We follow Williams’ notation [16]. Let F be a field and G be a multiplicative
group. The group algebra F[G] is defined over the set of elements of the form∑

g∈G
agg (1)

where ag ∈ F for all g ∈ G, i.e., on the set of sums of elements from G with
coefficients from F. Addition is computed component-wise as∑

g∈G
agg +

∑
g∈G

bgg =
∑
g∈G

(ag + bg)g , (2)

multiplication is defined in the form of a convolution:∑
g∈G

agg

∑
g∈G

bgg

 =
∑
g,h∈G

agbhgh =
∑
g∈G

(∑
h∈G

ahbh−1g

)
g , (3)

(since G is a multiplicative group, the expression h−1g here replaces the expres-
sion of the type g − h which is usually found in a convolution definition) and
multiplication by a scalar c ∈ F as

c

∑
g∈G

agg

 =
∑
g∈G

cagg . (4)

Let 0F, 1F be the addition and multiplication identities of F, respectively. Let
1G be the identity of G. It is easy to verify that F[G] is a ring where the addition
identity element 0F[G] =

∑
g∈G 0F · g is the element having all coefficients taken

as 0F, and the multiplication identity element 1F[G] = 1F · 1G = 1G. For ease of
notation, hereafter 0 and 1 will denote 0F[G] and 1F[G], respectively.

Let z be a symbolic variable. Our computations are done on the set (F[G])[z]
of univariate polynomials on z with coefficients in F[G]. Notice that the set of
polynomials with coefficients in a ring is a ring by itself. Throughout the paper,
when referring to a minimum-degree coefficient or monomial in a polynomial
from (F[G])[z], we always mean minimum degree w.r.t. z.

For our algorithm, we follow Williams and choose G to be Zk2 (i.e., the set
of binary vectors of dimension k) with multiplication between elements of Zk2
defined as entry-wise addition modulo 2. It follows that 1G is the k-dimensional

all-zeros vector. Notice that for all u, v ∈ Zk2 , u ·v = 1G iff u = v. We also choose
F = GF(2`) for ` = log k + 3. Notice that since F = GF(2`) has characteristic
2, it holds that for all c ∈ F, c + c = 0F, and therefore that for all v ∈ F[G],
v + v = 0.

3 Finding the Minimum Degree Coefficient Containing a
Multilinear Monomial

Let P (x1, . . . , xn, z) be a polynomial where x1, . . . , xn are variables to be de-
termined, but z is an indeterminate variable, and where all monomials in the
sum-product expansion of P are of the form xi1 · · ·xik ·zd. That is, all monomials
are the product of k (not necessarily distinct) x-variables, finally multiplied by
the term zd for some integer d. P can be represented as an arithmetic circuit
comprised of +-gates and ×-gates for which the inputs and the output are poly-
nomials in the indeterminate z. We let the +-gates be of unbounded fan-in and
the ×-gates be of fan-in 2. For the time being, we do not care about the exact
implementation of these gates. We let s(n) be the overall number of gates, and
let coeffdzP (x1, . . . , xn, z) be the d-th degree coefficient, w.r.t. z, of P . We claim
the following:

Theorem 1. Let P (x1, . . . , xn, z) be a polynomial represented as above, and let
d′ = min{d | coeffdzP (x1, . . . , xn, z) contains a multilinear term} (if such exists).
Then there is a randomized algorithms that computes d′ with probability at least
1/5, in time Õ(2kpoly(k)M · s(n)).

3.1 Algorithm

Given the circuit representing P , define a new polynomial P ′ as follows: P ′ is
identical to P except that the output of each multiplication gate gi is multiplied
by a random value yi ∈ F. Randomly pick n vectors v1, . . . , vn from G = Zk2 . Now
compute the polynomial P ′′(z) = P ′(1+v1, . . . , 1+vn, z). Let coeffdzP

′′(z) be the
d-th degree term coefficient of P ′′(z), and let d′ = min{d | coeffdzP

′(z) is not 0}
(if such exists). If d′ exists, return it. Otherwise output “no multilinear term
exists in P”.

3.2 Proof of Correctness

Observe the sum-product expansion of P ′, and let t = x(t) · y(t) · zd be some
monomial in it, where x(t) = xi1 · · ·xik is a product of k (not necessarily distinct)
x-variables, and y(t) is a product of t y-variables (which are necessarily distinct
by the definition of P ′). For a monomial t, notice that if x(t) is multilinear, it
is square-free, since each variable xi appears in it at most once. On the other
hand, if x(t) is non-multilinear, then it must contain some square x2

j . In order
to prove the algorithm correct, we need to show that w.h.p., (a) non-multilinear
monomials vanish, (b) multilinear monomials do not vanish by their evaluation,

and that (c) multilinear monomials are not eliminated when they are summed
with other (same-degree) products. These notions are captured by the following
propositions, which are similar to the ones in [16].

Proposition 1. If x(t) is non-multilinear, t vanishes.

Proof. Assume x(t) contains some square x2
j . Since xj was assigned with 1 + vj ,

it holds that x2
j = (1 + vj)

2 = 12
G + 2 · 1G · vj + v2

j = 1G + 2 · 1G · vj + 1G =
2 · 1G + 2 · 1G · vj = 0 + 0 = 0 where the third equality holds since for all v ∈ G,
v · v = 1G, and the fifth equality holds since F has characteristic 2 and therefore
for all c ∈ F, 2c = 0F. ut

Let J =
∑
v∈G v be the sum of all vectors from G = Zk2 (addition here is the

addition of F[G]).

Proposition 2. If x(t) is multilinear, then if the vectors vi1 , . . . , vik ∈ Zk2 are
linearly independent w.r.t. entry-wise addition modulo 2, then x(t) = J .

Proof. If the k vectors vi1 , . . . , vik ∈ Zk2 are linearly-independent, then they

form a basis B = {vi1 , . . . , vik} for Zk2 . Notice that x(t) =
∏k
c=1(1 + vic) =∑

S⊆B
∏
v∈S v, i.e., x(t) is the sum of every possible combination of vectors

from B, multiplied together. Hence, the sum covers all vectors in the span of B,
that is,

∑
S⊆B

∏
v∈S v =

∑
v∈span(B) v =

∑
v∈Zk

2
v = J . ut

Corollary 1. If x(t) is multilinear, then with probability at least 0.28 t does not
vanish.

Proof. The values vi1 , . . . , vik ∈ Zk2 were chosen randomly and independently.
It is known that a random k × k matrix of values from Z2 has full rank with
probability at least 0.28 [5]. ut

We have shown that with at least constant probability, multilinear terms do
not vanish when they are assigned values as described. However, it still might
happen that such multilinear terms will get eliminated when they are summed
up with other multilinear terms. The next two propositions show that this can
happen with at most constant probability.

Proposition 3. If the variables vi1 , . . . , vik ∈ Zk2 are linearly dependent w.r.t.
entry-wise addition modulo 2, then t vanishes.

Proof. Recall that x(t) =
∑
S⊆{vi1 ,...,vik}

∏
v∈S v. If the k vectors vi1 , . . . , vik ∈

Zk2 are linearly-dependent, then there exists a set T ⊆ {vi1 , . . . , vik} such that∏
v∈T = 1G. Since, as mentioned, for u, v ∈ G it holds that uv = 1G iff u = v,

we get that for all S′ ⊆ T ,
∏
v∈S′ v =

∏
v∈T\S′ v and therefore for a subset

S ⊆ {vi1 , . . . , vik},
∏
v∈S∩T v =

∏
v∈T\S v. Define the mapping f(S) = (S \T)∪

(T \S). Notice that S 6= f(S) and that as f(f(S)) = S, this mapping is bijective.
It follows that a specific value r can only occur an even number of times in the
summation, because if it occurs in the summation as r =

∏
v∈S v, then it must

also occur again as r =
∏
v∈(S\T)∪(T\S) v. Since 2r = 0F ·r as F has characteristic

2, all terms are eliminated in the summation. ut

Recall that P ′(x1, . . . , xn, z) is a polynomial in z and therefore can be viewed
as

P (x1, . . . , xn, z) =

kM∑
d=0

∑
t

degz(t)=d

y(t) · x(t) · zd . (5)

Let d′ be the minimum degree (w.r.t. z) in P ′ of a term t for which x(t) is
multilinear and let

coeffd
′

z P
′(x1, . . . , xn, z) =

∑
t

degz(t)=d′

y(t) · x(t) (6)

be its corresponding coefficient. Our goal is to show that with at least constant

probability, coeffd
′

z P
′ does not vanish when it is evaluated.

Proposition 4. coeffd
′

z P
′′(z) is not zero with probability at least 1/5.

Proof. By Propositions 2 and 3, it holds that

coeffd
′

z P
′′(z) = J ·

∑
t

degz(t)=d′ and t survived

y(t) .

Let
Q =

∑
t

degz(t)=d′ and t survived

y(t) .

Q is a degree-k polynomial in the variables yj . With probability at least 0.28 at
least one minimum-weight term t had survived and therefore Q is not identically
zero. In this case, by the Schwartz-Zippel lemma [15, 17, 8], when assigning ran-
dom values from GF(2`) to the yj variables, Q evaluates to zero with probability

at most k/2` = 1/8. Therefore Q (and hence, coeffd
′

z P
′(z)) does not vanish with

probability at least 0.28 · 7/8 > 1/5. ut

3.3 Running Time Analysis

The running time of the algorithm is dominated by the evaluation of the s(n)
gates in P ′’s representation, where each gate performs an arithmetic operation
over the polynomial ring (F[G])[z]. Therefore, we need to account for the the cost
of each such operation. Notice that for any arithmetic operation in (F[G])[z]
performed by our algorithm, the maximum degree (w.r.t. z) of the operand
polynomials and resulting polynomial, is at most kM . We can therefore focus
on the set R of polynomials in (F[G])[z] with degree at most kM . By treating
the polynomials in R as periodic with period kM (since there will be no carry
or overflow to greater degrees), R continues to be a ring. Let T be the upper-
bound on the time required for an arithmetic operation in R; trivially, T =
Ω(2k · kM log|F|). It follows that the algorithm requires O(s(n) · T) time, and it
remains to compute T .

Addition Gate. Addition of two polynomials can be easily done component-wise
in time O(kM · 2k · log|F|) = O(2kpoly(k)M).

Multiplication Gate. Multiplication is trickier and is done by employing a mul-
tidimensional fast Fourier transform-type approach.2 We now describe the mul-
tiplication process in more detail.

The multiplication process will be easier to describe on the ring F[Zk2 ×
[kM]] which is isomorphic to R, as will be shown immediately. Given a vector
v = (v1, . . . , vk) ∈ Zk2 and an integer d ∈ [kM], let (v; d) denote the vector
(v1, . . . , vk, d) ∈ Zk2 × [kM]. A polynomial p ∈ R can be uniquely described as a
sum

∑
v,d a(v;d) · (v; d) of at most N = 2kkM summands, where each a(v;d) ∈ F

is the coefficient of v appearing in coeffdzp (i.e., if coeffdzp =
∑
v∈G bvv, then

a(v;d) = bv). Our definition of multiplication over G = Zk2 can be naturally

extended to Zk2 × [kM]: multiplication still corresponds to entry-wise addition,
only that now addition is done modulo 2 for dimensions 1, . . . , k and modulo kM
for dimension k+1. With that in mind, our definitions of addition, multiplication,
and identity elements for R are extended appropriately, thus forming the ring
F[Zk2 × [kM]]. The bottom line is that now any p ∈ R can be viewed as a sum of
elements with coefficients taken from a multidimensional array indexed by values
from Zk2 × [kM] and that multiplication is still a convolution, an important fact
to be used later.

Moving to F = GF(2`), being a finite field, all elements in F can be rep-
resented in the usual manner as a degree-` polynomials with coefficients in
Z2 = GF(2) and operations that are done modulo some predefined irreducible
polynomial of degree ` (this irreducible polynomial can even be found näıvely
as ` = log k + 3). For the purpose of using FFT, we treat polynomials in Z2[x]
as if they were actually in C[x], i.e., the set of univariate polynomials over the
complex numbers. At the end of the multiplication process, we will appropriately
convert polynomials in C[x] back to GF(2`) as will be described shortly.

By the above arguments, given two polynomials p, q ∈ R to be multiplied,
they can be taken as the sums

∑
v,d p(v;d) · (v; d) and

∑
v,d q(v;d) · (v; d), respec-

tively, where p(v;d), q(v;d) ∈ C[x] for each v ∈ Zk2 and d ∈ [kM]. As the multipli-
cation corresponds to a convolution, by the convolution theorem, it holds that
p∗q = DFT−1(DFT(p)·DFT(q)), where ∗ denotes a convolution, · denotes point-
wise multiplication, and DFT denotes the (k + 1)-dimensional discrete Fourier
transform for values indexed by vectors of type (v1, . . . , vk, d) ∈ Zk2 × [kM]. Let
D(`) denote the time required for an arithmetic operation on degree-` poly-
nomials in C[x]—including converting them back to GF(2`) by division by an
irreducible polynomial—and notice that D(`) = O(`2) = O(poly log k) as mul-
tiplication and division here are quadratic by nature. Then the above DFT op-
erations can be computed efficiently in time O(N logN ·D(`)) = Õ(2kk2M) by
using the multidimensional FFT algorithm. Once we have computed DFT(p)

2 Here, as opposed to Williams [16], the Walsh-Hadamard transform is not an adequate
choice anymore due to the existence of the variable z which can have a degree up to
kM .

and DFT(q), thus obtaining for each of them N values in C[x] (indexed as
well by vectors in Zk2 × [kM]), we point-wise multiply them, obtaining an ar-
ray w = DFT(p) · DFT(q), and compute DFT−1(w), again by using FFT on
multidimensional coefficients in C[x]. Finally, we reduce C[x] terms (which are
actually in Z[x], as convolution over integer values returns integer values) by
dividing them by the irreducible polynomial used before and the appropriate
modulo operations.

We conclude that multiplication of polynomials in R can be performed in
time Õ(2kpoly(k)M), and therefore the overall running time of the algorithm is
Õ(2kpoly(k)M · s(n)).

4 Finding the Weight of the Minimum-Weight k-Path

Given a weighted, directed or undirected graph H = (V,E,w) on the vertex-
set V = {1, . . . , n}, with integer edge-weights in [−M,M], we first show how
to compute the weight of the minimum-weight k-path with high probability, by
reducing the problem to finding the minimum-degree coefficient containing a
multilinear monomial in a polynomial P (x1, . . . , xn, z).

We can assume that the edge weights are actually in [0,M], otherwise we
re-define w(i, j) ← w(i, j) + M for each (i, j) ∈ E and then M ← 2M : as this
process incurs a penalty of (k − 1)M for each k-path, it maintains the order
relation on k-path weights. Define a k-walk to be a walk in the graph comprised
of k (not necessarily distinct) vertices, and let I = 〈i1, . . . , ik〉 be some arbitrary
k-walk in H. With a slight abuse of notation, we will also use I to denote the
set of edges participating in the walk.

We define a collection {Bc}k−1
c=1 of polynomial matrices Bc as follows:

Bc[i, j] =

{
xi · zw(i,j) if (i, j) ∈ E,

0 if (i, j) /∈ E;
(7)

where each xi is a variable that corresponds to vertex i and z is a symbolic vari-
able. We define the polynomial P as follows: P (x1, . . . , xn, z) = 1·B1 · · ·Bk−1 ·x,
where 1 is the n-dimensional all-ones vector and x is the vector (x1, . . . , xn). Re-
writing P as its sum-product expansion we get:

P (x1, . . . , xn, z) =
∑
I

I=〈i1,...,ik〉 is a walk in H

(
k−1∏
c=1

Bc[ic, ic+1]

)
xik , (8)

that is, P is an aggregate sum over all k-walks in H, where each walk I =
〈i1, . . . , ik〉 is represented by the product of its corresponding components in
B1, . . . , Bk−1, finally multiplied by xik which corresponds to the final vertex of
the walk. By substituting the Bc[ic, ic+1]’s for their values, and re-arranging the
walk’s product such that the xi terms appear first, and then the z term, it follows
that

P (x1, . . . , xn, z) =
∑
I

I=〈i1,...,ik〉 is a walk in H

xI · zw(I) , (9)

where xI = xi1 · · ·xik and w(I) =
∑
e∈I w(e) is the weight of walk I. In other

words, each k-walk is represented in P as a product of the k variables repre-
senting the vertices visited by the walk, finally multiplied by z to the power of
the walk’s weight. For a k-simple-path I that visits each vertex at most once,
xI is multilinear. Therefore, the minimum-degree (w.r.t. z) monomial having a
multilinear xI corresponds to the minimum-weight k-path. By running the algo-
rithm from the previous section on P , we can find its weight. We now have the
following theorem:

Theorem 2. The weight of the minimum-weight k-path can be found with high
probability in Õ(2kpoly(k)Mn2) = O∗(2kM).

Proof. Correctness follows from the above discussion. As for the running time,
the circuit representation of the polynomial P is comprised of k − 1 vector-
by-matrix multiplication, and one vector-by-vector multiplication, and therefore
s(n) = O(k·n2). The overall running time is thus Õ(2kpoly(k)Mn2) = O∗(2kM),
by Theorem 1. ut

5 Finding the Actual Path

Let G = (V,E,w) be a weighted graph with integer edge-weights in [−M,M].
Given the algorithm from the previous section, we show that it is possible to
find the minimum-weight k-path itself with only O(kpoly log n) multiplicative
overhead w.r.t. the previous algorithm and with a polynomially small error prob-
ability.

We denote byA the algorithm from the previous section, amplified by running
O(log n) iterations of it and choosing the minimal result, such that its error
probability is bounded by 1/nc

′
for some constant c′. The algorithm for finding

the actual path uses A as a sub-routine.

We first run A(G, k) on the graph. Let d be the value returned by it, i.e.,
the weight of the minimum-weight k-path. If |V | > 10k, repeat the following
procedure Θ(log n) times:3 remove each of the graph vertices with probability
1/k. If Ω(|V |/k) vertices were removed, run A on the resulting graph and k.
If the algorithm had returned a result d′ = d, then keep the vertices discarded
indefinitely and stop, otherwise return them back to the graph. If after the
Θ(log n) iterations no vertices were discarded indefinitely, output “Fail”.

The above procedure is repeated as long as |V | > 10k. Once |V | ≤ 10k, we
perform an ordinary self reduction: each time we remove a different vertex and
query A with the resulting graph and k; if the result stays the same, we keep this
vertex discarded, otherwise, we return it to the graph. Once |V | = k, we return
the edge-set E as the resulting path. This algorithm’s pseudo-code is given as
Algorithm 1.

3 For the sake of brevity, we do not give full details of the underlying constants that
are required.

Algorithm 1: Finding the minimum-weight k-path.

1 d← A(G, k)
2 while |V (G)| > 10k do
3 for Θ(logn) times do
4 G′ ← a copy of G in which each vertex is removed with probability 1/k
5 if at least Ω(|V (G)|/k) were removed and A(G′, k) = d then
6 G← G′

7 Go to the while loop

8 return “Fail”

9 foreach remaining vertex v ∈ V (G) and until |V (G)| = k do
10 G′ ← G \ v /* G \ v is G with v and its incident edges removed */

11 if A(G′, k) = d then G← G′

12 return E(G)

Error Probability. Let P be the minimum-weight k-path in G, and assume k ≥ 3,
otherwise the problem is trivial. Let T be the set of vertices removed from G in an
iteration of the for loop. The probability T does not include any of the vertices of
P is (1−1/k)k ≥ 1/4. Now assume it does not, in that case it holds that E[|T |] =
|V (G)|−k

k ≥ 9|V (G)|
10k , and that V ar[|T |] = (|V (G)|−k)(1/k)(1−1/k) < |V (G)|/k.

According to Chebyshev’s inequality, |T | = Ω(|V (G)|/k) with probability of at
least a constant. It follows that the probability to pick T that does not hit any
of the vertices in P and at the same time is Ω(|V (G)|/k) is at least a constant
α > 0. We define this event as a “success”. Since we perform at most Θ(log n)
trials at each iteration of the while loop, the probability of failing in all of them
is (1 − α)Θ(logn) which can be made at most 1/nc for some constant c. By
using the union-bound over the O(k lnn) (as will be explained immediately)
iterations of the while loop, we get a polynomially-small error probability of at
most k lnn/nc. Since the probability to fail any invocation of A is less than 1/nc

′
,

by a similar union-bound argument the probability to fail in any of the calls to
A is O(k log2 n/nc

′
). We obtain an overall polynomially-small error probability.

Running Time. Each non-failed iteration of the while loop in Algorithm 1 dis-
cards Ω(|V (G)|/k) vertices and therefore reduces the number of vertices in
the graph by a multiplicative factor of (1 − Ω(1/k)). As this happens until
|V (G)| ≤ 10k, O(k lnn) iterations are enough for getting the number of vertices
to 10k. As each iteration invoked A at most O(log n) times, the O(kpoly log n)
multiplicative factor follows for this stage of the algorithm. As the for-each loop
incurs only O(k) < O(kpoly log n) calls to A, the running-time analysis follows.

6 Approximation

The main drawback of the previous algorithm is that its running time has a
superlinear dependency in M , the bound on an edge weight. If the weights are in

[1,M] (or can be normalized to this range), we show that if we settle for a (1+ε)-
approximation algorithm to the problem, this dependency can be brought down
to log logM , by using a technique of careful adaptive scaling of the edge weights,
thus bringing the overall running time to Õ(2kpoly(k)n2(log logM + 1/ε)). Our
techniques are in the spirit of the FPTAS of Ergün et al. [9] for the restricted
shortest path problem. We start with the following proposition:

Proposition 5. Given a graph G with integer edge-weights in [0,M], a param-
eter k, and a value B, it is possible to find an exact solution to the minimum-
weight k-path problem of weight at most B, if such exists, or to return that no
such solution exists, in time Õ(2kpoly(k)Bn2) = O∗(2kB) and polynomially-
small error probability.4

Proof. The algorithm is identical to the previous one, except that as a first step,
edges of weight greater than B are deleted from the graph, and that when mul-
tiplying two polynomials in (F[G])[z] of degree at most B, we truncate from
the resulting polynomial any term of degree greater than B, thus keeping all
polynomials throughout the algorithm at degree of at most B. As every poly-
nomial multiplication now takes Õ(2kpoly(k)B) time, the running time analysis
follows. ut

We denote with B the algorithm that finds an exact solution to the k-path
problem of weight at most B, if such exists, or returns that no such solution
exists. We will use it as a sub-routine in our approximation algorithm.

Define k′ = k − 1 (the number of edges in a k-path), and let OPT be the
minimum-weight k-path. Our approximation algorithm starts by defining an
upper and a lower bound, U and L, respectively, to the weight of OPT . At first,
U = k′M and L = k′. It then iteratively fine-tunes U and L to the point where
the ratio U/L is less than or equal to 2, while maintaining the invariant that
L ≤ w(OPT) ≤ U . This fine tuning is done as follows.

At each iteration we let the value X =
√
LU be the geometric mean of L

and U , and define the value δ = (L/U)1/3−
√
L/U which will serve as a scaling

coefficient. Notice that δ > 0 as U > L. We then scale-down the edge weights

by a factor of δU/k′, thus defining a new weight w′(i, j) =
⌊
w(i,j)
δU/k′

⌋
for each

edge (i, j), and let G′ = (V,E,w′) be the graph with the new weights. Ideally,
we would like to test whether the weight of the optimal solution is less than
or greater than X by calling B(G′, k, X

δU/k′); here notice that the value X
δU/k′ is

the scaled-down equivalent of X in G′. However, while the scaling guarantees
that this test can be done without incurring a high running time cost, it also
introduces a loss of precision due to the floor function in the scaling: define
weff(i, j) = (δU/k′)w′(i, j) as the effective weight w′(i, j) simulates, then we have
that weff(i, j) ≤ w(i, j) ≤ weff(i, j)+δU/k′, and therefore for a k-path P , we have
that weff(P) ≤ w(P) ≤ weff(P)+δU . Therefore, in the case w′(OPT) > X

δU/k′ we

have that w(OPT) ≥ weff(OPT) > X, but if w′(OPT) ≤ X
δU/k′ (and therefore

4 B does not have to be an integer, but the effect in this case is as if bBc is used.

Algorithm 2: Approximation algorithm.

1 k′ ← k − 1
2 L← k′

3 U ← k′M
4 while U > 2L do

5 X ←
√
LU

6 δ ← (L/U)1/3 −
√
L/U

7 Define w′ : E → N such that w′(i, j) =
⌊
w(i,j)
δU/k′

⌋
8 G′ ← (V,E,w′)

9 if B(G′, k, X
δU/k′) returns a result then

10 U ← X + δU
11 else
12 L← X

13 Define w′ : E → N such that w′(i, j) =
⌊
w(i,j)
εL/k′

⌋
14 G′ ← (V,E,w′)

15 return B(G′, k, U
εL/k′)

weff(OPT) ≤ X) then all we can assert is that w(OPT) ≤ X+δU . Therefore, a k-
path returned by a call to B(G′, k, X

δU/k′) has weight at most X+δU (and not X)

w.r.t. the original graph. According to the outcome of the call to B(G′, k, X
δU/k′),

we redefine U and L: if B(G′, k, X
δU/k′) returned a result, we set U ← X + δU ;

otherwise we set L← X.

When the main loop is done (convergence is shown to exist below), we again

redefine a new weight function: w′(i, j) =
⌊
w(i,j)
εL/k′

⌋
for each edge (i, j), the graph

G′ = (V,E,w′), and return the result of a call to B(G′, k, U
εL/k′). The full algo-

rithm pseudo-code is given as Algorithm 2.

Running Time. We first show that the main loop performs O(log logM) itera-
tions. Let Li, Ui be the respective values of L,U at the start of iteration i; we
will show that Ui+1/Li+1 ≤ (Ui/Li)

2/3. At the end of each iteration i, we have
that either Li+1 ← Li and Ui+1 ← X + δUi, or that Li+1 ← X and Ui+1 ← Ui,
where X =

√
LiUi and δ = (Li/Ui)

1/3 −
√
Li/Ui. In the former case we have

that

Ui+1

Li+1
=
X + δUi

Li
=

√
LiUi +

((
Li

Ui

)1/3

−
√

Li

Ui

)
Ui

Li
=

(
Li

Ui

)1/3

Ui

Li
=

(
Ui
Li

)2/3

,

(10)
and in the latter

Ui+1

Li+1
=
Ui
X

=
Ui√
LiUi

=

√
Ui
Li
≤
(
Ui
Li

)2/3

. (11)

In both cases we have that Ui+1/Li+1 ≤ (Ui/Li)
2/3. Therefore it converges to a

constant afterO(log logM) iterations. Notice that an invocation of B(G′, k, X
δU/k′)

costs Õ(2kpoly(k)n2) by Proposition 5, with the bound B = X
δU/k′ which is

O(k), as δU = Ω(X). We conclude that the overall cost of the main loop is
Õ(2kpoly(k)n2 log logM).

As for the final call to B(G′, k, U
εL/k′), we have that its running time is

Õ(2kpoly(k)n2/ε) by Proposition 5, with the bound B = U
εL/k′ which is O(k/ε)

since at this stage U ≤ 2L. We conclude that the overall running time of the
approximation algorithm is Õ(2kpoly(k)n2(log logM + 1/ε)).

Correctness. Throughout the execution, the algorithm maintains the invariant
that L < X < X + δU < U . That can be easily seen by substituting X and δ
for their values and observing that L <

√
LU < L1/3U2/3 < U . Assume that

there exists a k-path in G, and let OPT be the minimum-weight k-path. By
the scaling arguments, and the fact that we have brought the loss of precision
due to scaling into consideration when redefining U and L, we have that the
invariant L ≤ w(OPT) ≤ U always holds. Due to the running-time argument,
when the main loop is done we have U/L ≤ 2. Let P ∗ be the result of the call to
B(G′, k, U

εL/k′) at line 15 of the pseudo-code, and notice that the weights defined

at line 13 incur an εL/k′ loss of precision per edge, or equivalently εL per k-
path. By the call to the exact algorithm, we have that w′(P ∗) ≤ w′(OPT) and
therefore also weff(P ∗) ≤ weff(OPT). Accounting for the loss of precision, we
have that w(P ∗) ≤ weff(P ∗) + εL ≤ weff(OPT) + εL ≤ (1 + ε)w(OPT).

7 k-Tree

In [13], they provide a solution to the k-tree problem: given an n-vertex graph G
and a k-node tree T , is there a (not necessarily induced) copy of T in G. Again
their solution is based on a reduction to the question of is there a k-multilinear-
monomial in the sum-product expansion of a given polynomial. We show how to
handle the minimum-weight k-tree problem—in which we are given a weighted
graph G, and wish to find a minimum-weight copy of T in it, across all copies
of T in it—again, when the weights are integers in a given range [−M,M].

Theorem 3. Given a graph G, if the edge-weights are integers in [−M,M],
the minimum-weight k-tree can be found in Õ(2kpoly(k)Mn3) time. If the edge-
weights are reals in [1,M], the problem can be approximated within (1 + ε) in
Õ(2kpoly(k)n3(log logM + 1/ε)) time.

Let NG(i) be the neighbor-set of vertex i in G, and let X = {x1, . . . , xn} be a
variable-set corresponding to V (G). We define the following polynomial on X,
implemented as an arithmetic circuit:

Let V (G) = [n] and V (T) = [k]. The polynomial CT,i,j(x1, . . . , xn, z) is
defined as follows. If |V (T)| = 1, then CT,i,j = xj . Otherwise, CT,i,j is defined

recursively: let {Ti,` | ` ∈ NT (i)} be the subtrees of T created by removing node
i from T , where Ti,` is the subtree containing `. Then

CT,i,j = xj
∏

`∈NT (i)

 ∑
j′∈NG(j)

zw(j,j′)CTi,`,`,j′

 , (12)

where as before, z is a symbolic variable. Finally, define the polynomial P =∑
j∈V (G) CT,1,j . We shall find the minimum degree of a coefficient containing

a multilinear monomial in P , using the algorithm of Section 3, executed on P .
This degree is the weight of the minimum-weight k-tree in G, as will be shown
in the following:

Proposition 6. The weight of the minimum-weight k-tree can be found with
high probability in Õ(2kpoly(k)Mn3).

Proof. P is a sum over all homomorphisms from T to subgraphs of G of size at
most k: specifically CT,i,j aggregates over all homomorphisms that map i ∈ V (T)
to j ∈ V (G) (proof can be found in [13]5). Therefore, a monomial xj1 · · ·xjk · zd
appears in the sum-product expansion of P if an only if there is a homomorphism
mapping V (T) to {j1, . . . , jk} such that if (i, `) ∈ E(T), then (ji, j`) ∈ E(G).
If such a monomial is multilinear w.r.t. the x-variables, it corresponds to such
a homomorphism in which j1, . . . , jk are distinct vertices, i.e., a vertex in G
was not used more than once for the sake of a single mapping. Furthermore,
as the monomial includes the term zw(j,j′) in the product when the mapping
uses the edge (j, j′), the degree of z in the monomial is the weight of the k-tree
represented by it.

As for the running time, each CT,1,j can be implemented as a circuit con-
taining O(|E(T)| · |E(G)|) addition and multiplication gates. To see this, no-
tice that the expression CT,1,j implicitly assumes that T is a tree rooted by
the node 1 ∈ V (T). To emphasize this, we define T1 = T and define Ti to
be the subtree of T that has i as its root. For a rooted tree Ti, we also de-
fine N ′T (i) to be i’s children. When we compute the expression CT ′,i,j , for
some T ′ subtree of T , T ′ is actually the subtree Ti, and we can write CT ′,i,j
as CTi,i,j . We can compute CT1,1,j in a bottom-up fashion, that is, when we
actually compute CT ′,i,j = CTi,i,j , for some i, j, we have already computed
CT ′i,`,`,j′ = CT`,`,j′ for each ` ∈ N ′T (i), j′ ∈ NG(j). Therefore, once we have

CT`,`,j′ for each ` ∈ N ′T (i), j′ ∈ NG(j), additional O(|N ′T (i)| · |NG(j)|) operations
are required to compute CTi,i,j . As we need to compute CTi,i,j for every i, j, the

overall number of gates is
∑k
i=1

∑n
j=1O(|N ′T (i)| · |NG(j)|) = O(|E(T)| · |E(G)|).

It follows that P contains n · |E(T)| · |E(G)| = O(n3k) gates, and thus the
overall running time is Õ(2kpoly(k)Mn3) = O∗(2kM), by Theorem 1. ut

From this point, notice that the method for finding the actual k-path (in
Section 5), and the approximation algorithm (in Section 6) apply to the k-tree

5 Their arithmetic circuit is defined as
∑
i∈V (T),j∈V (G) CT,i,j , however, it seems to

contain redundancy.

problem as well, as they are agnostic to the actual problem: the first one uses
repeated calls to the above algorithm in order to throw away vertices that do
not participate in the k-tree (k-path), and the second uses repeated calls to the
above algorithm with different scales applied to the edge weights. We obtain
that the minimum-weight k-tree problem with integer edge-weights in [−M,M]
can be solved in Õ(2kpoly(k)Mn3) time and that if the edge-weights are reals in
[1,M], it can be approximated within (1+ε) in Õ(2kpoly(k)n3(log logM+1/ε))
time.

8 Acknowledgments

We would like to thank Ryan Williams and Danny Raz for helpful comments.

References

1. Abasi, H., Bshouty, N.H.: A simple algorithm for undirected hamiltonicity. Elec-
tronic Colloquium on Computational Complexity (ECCC) 20, 12 (2013)

2. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)
3. Björklund, A.: Determinant sums for undirected hamiltonicity. In: FOCS, pp.

173–182. IEEE Computer Society (2010)
4. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Narrow sieves for parameter-

ized paths and packings. CoRR abs/1007.1161 (2010)
5. Blum, M., Kannan, S.: Designing programs that check their work. J. ACM 42(1),

269–291 (1995)
6. Chen, J., Lu, S., Sze, S.H., Zhang, F.: Improved algorithms for path, matching, and

packing problems. In: N. Bansal, K. Pruhs, C. Stein (eds.) SODA, pp. 298–307.
SIAM (2007)

7. Cygan, M., Gabow, H.N., Sankowski, P.: Algorithmic applications of baur-
strassen’s theorem: Shortest cycles, diameter and matchings. In: FOCS, pp. 531–
540. IEEE Computer Society (2012)

8. DeMillo, R.A., Lipton, R.J.: A probabilistic remark on algebraic program testing.
Inf. Process. Lett. 7(4), 193–195 (1978)

9. Ergün, F., Sinha, R.K., Zhang, L.: An improved fptas for restricted shortest path.
Inf. Process. Lett. 83(5), 287–291 (2002)

10. Hassidim, A., Keller, O., Lewenstein, M., Roditty, L.: Finding the minimum-weight
k-path. In: F. Dehne, R. Solis-Oba, J.R. Sack (eds.) WADS, Lecture Notes in
Computer Science, vol. 8037, pp. 390–401. Springer (2013)

11. Kneis, J., Mölle, D., Richter, S., Rossmanith, P.: Divide-and-color. In: F.V. Fomin
(ed.) WG, Lecture Notes in Computer Science, vol. 4271, pp. 58–67. Springer (2006)

12. Koutis, I.: Faster algebraic algorithms for path and packing problems. In: L. Aceto,
I. Damg̊ard, L.A. Goldberg, M.M. Halldórsson, A. Ingólfsdóttir, I. Walukiewicz
(eds.) ICALP (1), Lecture Notes in Computer Science, vol. 5125, pp. 575–586.
Springer (2008)

13. Koutis, I., Williams, R.: Limits and applications of group algebras for parameter-
ized problems. In: S. Albers, A. Marchetti-Spaccamela, Y. Matias, S.E. Nikoletseas,
W. Thomas (eds.) ICALP (1), Lecture Notes in Computer Science, vol. 5555, pp.
653–664. Springer (2009)

14. Monien, B.: How to find long paths efficiently. Annals of Discrete Mathematics
25, 239–254 (1985)

15. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identi-
ties. J. ACM 27(4), 701–717 (1980)

16. Williams, R.: Finding paths of length k in o*(2k) time. Inf. Process. Lett. 109(6),
315–318 (2009)

17. Zippel, R.: Probabilistic algorithms for sparse polynomials. In: E.W. Ng (ed.)
EUROSAM, Lecture Notes in Computer Science, vol. 72, pp. 216–226. Springer
(1979)

18. Zwick, U.: All pairs shortest paths using bridging sets and rectangular matrix
multiplication. J. ACM 49(3), 289–317 (2002)

