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Abstract

In substring compression one is given a text to preprocess so that, upon re-
quest, a compressed substring is returned. Generalized substring compression
is the same with the following twist. The queries contain an additional context
substring (or a collection of context substrings) and the answers are the sub-
string in compressed format, where the context substring is used to make the
compression more efficient.

We focus our attention on generalized substring compression and present the
first non-trivial correct algorithm for this problem. Inherent to our algorithm is a
new method for finding the bounded longest common prefix of substrings, which
may be of independent interest. In addition, we propose an efficient algorithm
for substring compression which makes use of range successor queries.

We present several tradeoffs for both problems. For compressing the sub-
string S[i . . j] (possibly with the substring S[α . . β] as a context), the best query
times we achieve are O(C) and O

(
C log

(
j−i
C

))
for substring compression query

and generalized substring compression query, respectively, where C is the num-
ber of phrases encoded.

A preliminary version of this paper has been presented in [21].

Keywords: Data compression, Lempel-Ziv compression, Suffix tree, Range
searching

1. Introduction

While string compression has been studied for decades, substring compres-
sion is relatively lightly studied. The topic was introduced in [8], where a set
of problems concerning substring compression focusing on the compression al-
gorithm of Lempel and Ziv [35] was presented. They deal mainly with two
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variants of this topic, namely, given a string, what is the compressibility of dif-
ferent substrings of that string, both in the sense of the actual compression of
the substrings and in the sense of comparing which of the substrings is the least
or most compressible.

The goal of our research is to find the inherent connection between the com-
pressed representation of a string and that of its substrings. Such a connection
could have interesting practical applications, and may lead the way to finding
further connections between certain properties of strings and that of their sub-
strings. In addition, it may be interesting to further investigate the topic of
substring compression using other compression methods.

We address the following problems: in the substring compression query
(SCQ) problem, we wish to compress a given substring of the string S, de-
noted by start and end location. Note that we are allowed to preprocess S
beforehand, so that we would be able to answer this query for any substring in
S without having to scan the substring during query time. In its generalized
and more powerful version, the generalized substring compression query (GSCQ)
problem, we wish to compress the substring according to a given context taken
from S as well. In both problems, our goal is to provide query times which are
proportional to the size of the compressed substring as opposed to the size of
the substring in its non-compressed form.

1.0.1. Applications

The issue of substring compression has interesting implications for a variety
of practical applications. Recent works such as those presented in [7, 9, 31]
for example, use compression of biological sequences as a basis of comparison
between different sequences, and their information content. Compression of sub-
sequences can therefore be used to perform such comparisons in a more efficient
and accurate manner.

The result presented in [18], uses straight-line-program compression in order
to speed up computation of edit-distance. This results relies heavily on the
findings of Rytter [32].3 There, Rytter proved that an LZ77 [35] encoding can
be transformed to a straight-line program quickly and without large expansion.
Therefore, one may be able to use substring compression to speed up the edit
distance computation of substrings, which may be a problem of independent
interest.

1.1. Our Results

1. Our main result is an efficient and innovative algorithm for the general-
ized substring compression query, introduced in [8]. There an algorithm
was suggested, however it is incorrect [29]: it overlooked the inherent
added difficulty of the generalized problem which uses a bounded context,
dismissing it as trivial, while it is in fact the essence of the generalized
problem. The additional bounded context requires a different algorithm

3See also [6] where the same problem was independently addressed by Charikar et al.
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Table 1: Results

Prob. Query Time Space Source

GSCQ O
(
Cα,β(i, j) log

( j−i
Cα,β(i,j)

))
O(n1+ε) new

O
(
Cα,β(i, j) log

( j−i
Cα,β(i,j)

)
log logn

)
O(n logε n) new

O
(
Cα,β(i, j)

(
log

( j−i
Cα,β(i,j)

)
log logn+ (log logn)2

))
O(n log logn) new

O
(
Cα,β(i, j) log

( j−i
Cα,β(i,j)

)
logε n

)
O(n) new

SCQ O(C(i, j)) O(n1+ε) new
O(C(i, j) log logn) O(n logε n) new
O(C(i, j)(log logn)2) O(n log logn) new
O(C(i, j) logε n) O(n) new
O(C(i, j) logn log logn) O(n logε n) [8]

than the context within the substring to be compressed, that we will de-
scribe in detail in this paper. Therefore, the solution provided in [8] in
fact does not solve the problem. Our solution for this problem is based on
a solution to finding the bounded longest common prefix (BLCP) of two
substrings, which is a notion we will introduce shortly.

2. In addition, we improve results shown for the substring compression query.
Our result is based mainly on an improved solution for finding the interval
longest common prefix (ILCP) of two substrings. This is done using an
efficient solution for the problem of range successor [25]4, and not on
the more classical range reporting problem (see, for instance [1, 5]), used
by [8] and numerous other indexing-related papers [14, 2, 15, 27]. This
constitutes a different method in order to reduce the substring compression
query problem to the geometric problem. See [26] for a survey on the
connection between text indexing and various range searching techniques.

Our solutions are based on a variety of tools, such as suffix trees, lowest com-
mon ancestor queries, level ancestor queries, and several kinds of range searching
structures. As a result, solutions to both SCQ and GSCQ constitute tradeoffs
between query times and space, due to the choice of range searching structures
to be used. Denote C as the number of phrases encoded. A comparison of the
results is presented in Table 1.

Note that range problems on strings has garnered much interest lately with
different papers exploring different aspects of range problems. We refer the
interested reader to [8, 21, 22, 30, 27, 4, 19, 23].

The rest of our paper is organized as follows: in Section 2, we give some
preliminaries and problem definitions. In Sections 3.3 and 3.2, we describe our
solutions for finding the BLCP and ILCP. In Section 4, we present the outline
of the query algorithm’s main loop, which is roughly common to both the SCQ
and GSCQ problems. In Sections 5 and 6, we present the solutions and analysis

4The range successor problem was introduced in [25] under the name range searching for
minimum. The name “range successor” is used in [22, 30]. An almost-identical problem is
the range next value problem [12] that will be discussed later.
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for SCQ and GSCQ.

2. Problem Definitions and Preliminaries

2.1. Preliminary Definitions and Notations

Given a string S, |S| is the length of S. Throughout this paper we denote n =
|S|. An integer i is a location or a position in S if i = 1, . . . , |S|. The substring
S[i . . j] of S, for any two positions i ≤ j, is the substring of S that begins at
index i and ends at index j. Concatenation is denoted by juxtaposition. The
suffix Si of S is the substring S[i . . n].

The suffix tree [34, 33, 13, 28] of a string S, denoted ST(S), is a compact
trie of all the suffixes of S$ (i.e., S concatenated with a delimiter symbol $ 6∈ Σ,
where Σ is the alphabet set). Each of its edges is labeled with a substring of
S (actually, a representation of it, e.g., the start location and its length). The
“compact” property is achieved by contracting nodes having a single child. The
children of every node are sorted in the lexicographical order of the substrings on
the edges leading to them. Consequently, each leaf of the suffix tree represents
a suffix of S, and the leaves are sorted from left to right in the lexicographical
order of the suffixes that they represent. ST(S) requires O(n) space. Algorithms
for the construction of a suffix tree enable O(n) preprocessing time when |Σ| is
constant, and O(n log min(n, |Σ|)) time when |Σ| is not. In fact, the suffix tree
can be constructed in linear time even for alphabets drawn from a polynomially-
sized range, see [13].

In addition, our algorithms make use of elements from the field of compu-
tational geometry; let P = {(x1, y1), . . . , (xn, yn)} be a set of n points on an
[n] × [n] grid. The following range searching query types are defined on P , for
various types of a two-dimensional range R:

rangesuccy(R = [x, x′]×[y,∞]): reports the single point of P that is included in
the range and has a minimal y-coordinate, i.e., the point arg min(x,y)∈P∩R y.
In other words, the resulting point is the successor to y (on the y-axis)
having x-coordinate in the range [x, x′]. The query types rangesuccx and
rangepredx for successor and predecessor respectively, this time on the
x-axis, are defined in the same manner.

emptiness(R = [x, x′]× [y, y′]): returns “true” iff P ∩R = ∅.

2.1.1. An Overview of the Lempel-Ziv Algorithm

The LZ77 variation of the Lempel-Ziv algorithm works as follows: given an
input string S of length n, the algorithm encodes the string in a greedy manner
from left to right. At each step of the algorithm, suppose we have already
encoded S[1 . . k − 1], we search for the location t, such that 1 ≤ t ≤ k − 1,
for which the longest common prefix of S[k . . n] and the suffix St, is maximal.
Once we have found the desired location, suppose the aforementioned longest
common prefix is the substring S[t . . r], a phrase will be added to the output
which will include the encoding of the distance to the substring (i.e., the value
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k− t) and the length of the substring, (i.e., the value r− t+ 1). The algorithm
continues by encoding S[k + (r − t + 1) . . n]. Finally, we denote the output of
the LZ77 algorithm on the input S as LZ(S).

The string S may be encoded within the context of the string T . We denote
this by LZ(S | T ). The practical meaning of this is that the result is as if
the algorithm was performed on the concatenated string T$S, where $ is a
symbol that does not appear in neither S nor T , however, only the portion
of LZ(T$S) which represents the compression of S is output by the algorithm.
Some exceptions apply to this rule as will be described later. An example for the
use of an additional context for compression and retrieval of genomic sequences
can be seen in [24].

Recently, several works [10, 20, 16] have been done concerning a related
problem, called Lempel-Ziv factorization. The Lempel-Ziv factorization of a
string S is defined to be the decomposition S = s1s2 . . . sv such that for each
i = 1, . . . , v−1, si is the longest prefix of sisi+1 . . . sv that appears in s1 . . . si−1.
If this prefix is empty, si will be a single character [11]. It may be interesting
to see how this problem and the solutions proposed for it can be adapted to the
problems we present in this work.

2.2. Problem Definitions

Given a string S of length n, we wish to preprocess S in such a way that
allows us to efficiently answer the following queries:

Substring Compression Query (SCQ(i, j)): given any two indices i and j,
such that 1 ≤ i ≤ j ≤ n, we wish to output LZ(S[i . . j]).

Generalized Substring Compression Query (GSCQ(i, j, α, β)): given any
four indices i, j, α, and β, such that 1 ≤ i ≤ j ≤ n and 1 ≤ α ≤ β ≤ n,
we wish to output LZ(S[i . . j] | S[α . . β]).

Query times for both of the above query types will be strongly dependent on the
number of phrases actually encoded. We denote these as C(i, j) and Cα,β(i, j)
for SCQ and GSCQ, respectively. Our results will rely on the two following
primitives:

Bounded Longest Common Prefix (BLCP(k, l, r)): given k, and given
positions l and r which induce the context substring S[l . . r], we look for the
longest common prefix of S[k . . j] and a substring which starts at some location
l ≤ t ≤ r within the context. The substring chosen must not exceed the end of
context. In other words, it must be a prefix of some substring S[t . . r].

Interval Longest Common Prefix (ILCP(k, l, r)): given k, l, r,this time
we look for the longest common prefix of S[k . . j] and a substring which starts
at some location l ≤ t ≤ r, without further constraints.

While it may not seem so at first glance, BLCP queries are more difficult to
implement than ILCP. For example, consider two suffixes St1 and St2 , such that
l ≤ t1 < t2 ≤ r, for which |LCP(Sk, St1)| < |LCP(Sk, St2)| (where LCP(S1, S2),
for two strings S1 and S2, stands for the longest common prefix of S1 and S2).
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Some portion of the last characters of LCP(Sk, St2) may not be eligible for con-
sideration. Namely, if |LCP(Sk, St2)| exceeds r− t2 +1 characters, LCP(Sk, St2)
exceeds location r, and therefore literally “grows out of context”. In that case,
it may be that St1 will eventually be the suffix to be preferred. One should take
into account that such a cut-off may pertain to LCP(Sk, St1) as well. (Note:
in the case i − 1 ≤ r < j, if desired, one can allow a substring taken from the
context to exceed r. This is a trivial extension to the algorithm for ILCP.)

3. Limiting the Longest Common Prefix: Answering ILCP and BLCP
Queries

3.1. Preprocessing Motivation

We begin the preprocessing by constructing the suffix tree of S, ST(S). In
the suffix tree, each leaf ` is associated with a suffix of S$ and is therefore
marked with an integer y(`) which is the start location of that suffix. We also
mark each leaf ` with an integer x(`) which is the lexicographical rank of the
suffix associated with ` within the set of all suffixes of T (this is done by using
one depth-first traversal, in which we number the leaves from left to right). We
then preprocess the set P = {(x(`), y(`)) | ` is a leaf in ST(S)} ⊆ [n + 1]2 for
the range searching query types mentioned before. We will refer to the points
in P as suffix points.

Suppose we search ST(S) for some substring S[l . . r], we can find all the
occurrence positions of S[l . . r] in S, by traversing ST(S) from the root down-
wards according to the symbols in S[l . . r], until either (1) the next symbol of
the pattern cannot be found at our current location in the tree — in this case
we conclude that S[l . . r] does not occur in S; (2) the pattern is exhausted and
we conclude the traversal at a node v in ST(S) (or the edge leading to it from
its parent, for that matter). Let v be the node in which the search ended. All
the leaves in the subtree rooted at v, denoted Tv, correspond to occurrences
of S[l . . r] in S. Hence the set Yv = {y(`) | ` is a leaf in Tv} is the set of all
occurrence positions of S[l . . r] in S. From the properties of the suffix tree it
follows that the set Xv = {x(`) | ` is a leaf in Tv} forms a consecutive range
of values in [n + 1]. This is exactly the range Xv = [x(lv), x(rv)], where lv
and rv are the leftmost and rightmost leaves in Tv, respectively. It therefore
holds that for a leaf `, ` is a leaf in Tv iff x(`) ∈ [x(lv), x(rv)]. In other words:
x(`) ∈ [x(lv), x(rv)] iff S[l . . r] appears in S at location y(`).

Notice that each node u in the suffix tree has two different notions of depth:
the ordinary perception of depth of a node in a tree, denoted depth(u), and the
length of the string u represents (derived by the concatenation of edge labels
on the path from the root to u), denoted length(u). Now let Si and Sj be
two suffixes of S, and consider the longest common prefix of Si and Sj , denoted
LCP(Si, Sj). Let `i and `j be the leaves corresponding to Si and Sj , respectively
(i.e., i = y(`i) and j = y(`j)). Then |LCP(Si, Sj)| = length(LCA(`i, `j)), where
LCA(`i, `j) is the lowest common ancestor of `i and `j .
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3.2. Answering ILCP queries

Here our primary goal is to obtain an efficient way of finding ILCP(k, l, r),
that is, given k, l, r, we seek the longest common prefix of S[k . . j] and a sub-
string which starts at some location l ≤ t ≤ r. An example of this constraint
can be seen in Fig. 1.

a 
$ 

$ 

$ 

$ 

13 11 8 5 2 12 10 7 1 4 3 6 9 

13 12 11 10 9 8 7 6 4 5 1 2 3 

Y= 

X= 

Figure 1: The suffix tree for the string S = abaabaabaaba$ is shown. The x values indicate the

lexicographical rank of the suffix. The y values indicate the index of the suffix in S. Assume

we are compressing the substring: S[4 . . 9] that is abaaba, and that, so far, we have encoded

the substring: S[4 . . 6], meaning abaaba. The marked suffix indicates the suffix that should

be encoded next.

Recall that when searching for ILCP(k, l, r), while the resulting substring
must start at some location l ≤ t ≤ r, it is allowed to exceed location r. This is
the equivalent to finding the location l ≤ t ≤ r, for which the longest common
prefix of S[k . . j] and the suffix St, is maximal.

Consider the suffix Sk. Clearly, it is sufficient to find the location t ∈ [l, r] for
which |LCP(Sk, St)| is maximized, i.e., t = arg maxz∈[l,r]|LCP(Sk, Sz)| (with-
out necessarily computing the value |LCP(Sk, St)| at this stage). Once the
aforementioned location t is found, we compute |LCP(Sk, St)|. Therefore, to
summarize, we have two steps: (1) finding the location t, and (2) computing
|LCP(Sk, St)|.
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3.2.1. Finding the Start Location t

We use a reduction to the problem of range successor on a grid, as opposed
to the range reporting used in [8]. An example of the geometric representation
of the scenario depicted in Fig. 1 can be seen in Fig. 2.
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5

6

7

8

9

10

11

12

0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 2: The grid depicts the geometric representation of the suffix tree for the string S =

abaabaabaaba$. The enlarged point at (6, 7) represents the suffix S7, as the substring aba,

yet to be encoded, starts at position 7 in the string S. The grayed area of the grid represents

the part of the substring which has already been encoded, that is S[4 . . 6]. When finding the

start location t, we will be limited to using points found in the gray area.

Consider the suffix Sk, and consider the set of suffixes Γ = {Sl, . . . , Sr}.
Since |LCP(Sk, St)| = maxz∈[l,r]|LCP(Sk, Sz)|, St is in fact the suffix lexico-
graphically closest to Sk, out of all the suffixes of the set Γ.

We will first assume that we are searching for a suffix St1 , such that the
suffix St1 is lexicographically smaller than Sk. The process for the case where
the suffix chosen is lexicographically greater than Sk is symmetric. Therefore,
all we are required is to choose the best of both, i.e., the option yielding the
greater |LCP(Sk, St)| value.

Since we have assumed w.l.o.g. that St1 is lexicographically smaller than Sk,
we have actually assumed that x(`t1) < x(`k), or equivalently, that `t1 appears
to the left of `k in the suffix tree. Incorporating the lexicographical ranks of
Sk and St1 into the expression, t1 is actually the value which maximizes the
expression max{x(`t1) | l ≤ t1 ≤ r and x(`t1) < x(`k)}. Notice that t1 = y(`t1).

Now consider the set P = {(x(`), y(`)) | ` is a leaf in ST(S)}. Assuming
indeed x(`t1) < x(`k), we are interested in finding the maximal value x(`t1), such
that x(`t1) < x(`k), and l ≤ y(`t1) ≤ r. It immediately follows that the point
(x(`t1), y(`t1)) ∈ P is the suffix point in the range [−∞, x(`k)−1]× [l, r] having
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maximal x-coordinate, and therefore can be obtained efficiently by querying
rangepredx([−∞, x(`x)−1]×[l, r]). Once we have found the point (x(`t1), y(`t1)),
we can locate `t1 , as it is the x(`t1)-th leaf from the left. The leaf `t1 will be of
importance in the next section.

Equivalently, there exists t2 such that St2 is the suffix lexicographically larger
than Sk and closest to it. In other words, we assume x(`t2) > x(`k), or equiva-
lently, that `t2 appears to the right of `k in the suffix tree. t2 can be found using
a symmetric procedure: we query for the rangesuccx([x(`x) + 1,∞]× [l, r]). An
example of the queries performed can be seen in Fig. 3.
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(a) rangesuccx([x(`x) + 1,∞]× [l, r]),

Output: the point (10, 5).
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(b) rangepredx([−∞, x(`x)− 1]× [l, r]),

Output: the point (5, 4).

Figure 3: Each grid depicts the geometric representation of the suffix tree for the string

S = abaabaabaaba$. The values given for the example queries are: x = 6, l = 4 and r = 6.

The chosen suffix in this case would be S4 since |LCP(S7, S4)| is greater than |LCP(S7, S5)|.

Determining whether t = t1 or t = t2 is implemented by calculating both
|LCPSk, St1 | and |LCPSk, St2 |, and choosing the larger of the two. The exact
method of calculating both values is described next.

3.2.2. Computing |LCP(Sk, St)|
Consider `k and `t as described above. Since |LCP(Si, Sj)| = length(LCA(`i, `j))

for any i and j, it is sufficient to find the node w = LCA(`k, `t) and then to
compute length(w). Using the methods of Harel and Tarjan [17], an LCA query
can be answered in constant time. If the value length(u) for each node u has
been stored in u beforehand, we conclude the value length(w) is obtainable in
O(1) time.
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3.3. Answering BLCP queries

Assume that we wish to answer the query BLCP(k, l, r). Consider the suffix
Sk represented by the path from the root to `k. For any other suffix St and
an integer d ≥ 0, let LCPd(Sk, St) be the longest common prefix of Sk and
St, truncated to at most d characters (i.e., if LCP(Sk, St) exceeds d charac-
ters, we will leave only the first d and discard the others). By the definition of
BLCP(k, l, r), we are limited to finding substrings that do not exceed location
r. Therefore, we actually wish to find t′ = arg maxt∈[l,r]|LCPr−t+1(Sk, St)|.
Here notice that the term r − t + 1 is the maximal length of the portion of
St we can use, according to the constraints. Also notice that by definition,
|LCPr−t+1(Sk, St)| = min{|LCP(Sk, St)|, r − t + 1}. If several positions t that
maximize the above expression exist, we define t′ to be the leftmost such posi-
tion, i.e., the smallest such value.

Definitions and Notations. For a node u, let path(u) be the path in ST(T )
from the root to u. With a slight abuse of notation, we will also use path(u)
to denote the set of nodes participating in such a path. For a suffix St we
also define path(St) = path(`t) where `t is the leaf representing St in the suffix
tree. In the context of a BLCP(k, l, r) query, a suffix St is said to be relevant if
l ≤ t ≤ r.

A suffix St is said to be eligible at a node u ∈ path(Sk) if the string repre-
sented by path(u) is a prefix of LCPr−t+1(Sk, St). Consider the suffix Sk repre-
sented by the path from the root to `k. As suffixes St with greater |LCP(Sk, St)|
values branch out of this path at a later stage (i.e., leave this path at nodes of
greater depth), we are interested in suffixes which share a large portion of this
path. However, as |LCPr−t+1(Sk, St)| (and not |LCP(Sk, St)|) is the expression
to be maximized, we are restricted by the eligibility of suffixes along nodes in
path(Sk). An example of eligibility is shown in Fig. 4.

We shall find t′ in two phases. First we will efficiently locate a node v ∈
path(Sk) of maximal depth such that there exists a relevant suffix St which is
eligible at v. We will in fact prove that St′ is one of the suffixes that are eligible
at v. Second, in the case that there are several relevant suffixes St which are
eligible at v, we shall efficiently find St′ among them.

3.3.1. Finding Node v

Observe path(Sk). We wish to search this path for the lowest node v for
which there exists t such that St is relevant and eligible at v. Notice that the
notion of eligibility satisfies the property that if some suffix St is eligible at some
node u ∈ path(Sk), then St is eligible at all of u’s ancestors as well. In other
words, the eligibility property is monotone along path(Sk). If the suffix tree had
been preprocessed for answering level-ancestor queries, by the methods of, for
example, [3], we can find the ancestor of `k of a specific depth d in O(1) time.
We conclude that we can perform a binary search on the depth of nodes on this
path: at each node u we probe, we will efficiently test whether there exists some
relevant suffix which is eligible at u.

10



$ 

$ 

13 11 8 5 2 12 10 7 1 4 3 6 9 

v1 

v2 

Figure 4: Again we look at the suffix tree of the string S = abaabaabaaba$. This time we

would like to encode the substring S[7 . . 9] within the context of S[2 . . 5]. For this example,

looking at location r = 5, the suffix S4 is eligible at node v1 and is not eligible at node v2.

We can perform this test by conducting the following range emptiness query:
emptiness([x(lu), x(ru)] × [l, r − length(u) + 1]). This is captured by the two
following lemmas:

Lemma 1. A suffix St is eligible at a node u ∈ path(Sk) iff u ∈ path(St) and
length(u) ≤ r − t+ 1.

Proof. Let Su be the string represented by path(u). By definition, St is eligible
at u if Su is a prefix of LCPr−t+1(Sk, St). That happens if and only if (a) Su

is a prefix of LCP(Sk, St) and therefore u ∈ path(St), and (b) the length of Su,
i.e., length(u) is at most r − t+ 1.

Lemma 2. Fix the range [l, r] and let St be a suffix. Then (x(`t), y(`t)) ∈
([x(lu), x(ru)]× [l, r − length(u) + 1]) iff St is relevant and eligible at u.

Proof. Let St be a suffix. From the properties of a suffix tree, it holds that
St’s lexicographical rank x(`t) is in [x(lu), x(ru)] if and only if `t is a leaf in
Tu or equivalently if and only if u ∈ path(St). For its start location t = y(`t),
y(`t) ∈ [l, r−length(u)+1] if and only if both y(`t) ∈ [l, r] (i.e., St is relevant) and
y(`t) ≤ r− length(u)+1. As the latter can be re-stated as length(u) ≤ r− t+1,
the lemma holds.

We conclude that the emptiness query returns a negative result if and only
if there exists a suffix St which is both relevant and eligible at u.

Instead of the ordinary O(log n)-time binary search, we use a mixed “gallop-
ing” and ordinary binary search approach: we conduct the search by iterations,
where in the i-th iteration we probe the node on the path whose depth is 2i−1−1
and conduct the proper range emptiness query on it, repeating this process until
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the first node whose emptiness query returned a positive result is encountered.
Denote this node as q and denote the last node probed before q as p. Now we
find v by binary searching on the sub-path between p and q. The main impor-
tance of the mixed search, is that now, using a refined analysis, we will later
prove that encoding a phrase is done in time logarithmic in the phrase’s length
(rather than n).

Recall that we have defined t′ = arg maxt∈[l,r]|LCPr−t+1(Sk, St)|. At the
end of this phase we have the following lemma:

Lemma 3. v is the node of maximal depth at which St′ is eligible.

Proof. Assume not, and let v′ 6= v be the the node of maximal depth at which
St′ is eligible. (Notice that v′ is well-defined since St′ is trivially eligible at the
root.) Since both v, v′ ∈ path(Sk) then either v is an ancestor of v′ or vice-versa.

In the former case, depth(v′) > depth(v). However, by Lemma 2 and the
monotonicity of the eligibility property, the binary search described before must
conclude with the maximal depth node at which some relevant suffix is eligible,
which contradicts the fact that St′ is eligible at v′.

In the latter case length(v′) < length(v) and by Lemma 2, there exists a
relevant suffix St which is eligible at v, and therefore |LCPr−t+1(Sk, St)| ≥
length(v). Since length(v′) < length(v) and by the definition of v′, St′ cannot
be eligible at v. Therefore, |LCPr−t′+1(Sk, St′)| < length(v), otherwise, when
traversing LCPr−t′+1(Sk, St′) starting from the root of the suffix tree, we would
have to visit v, a fact which would make St′ eligible at v as well. Therefore
|LCPr−t+1(Sk, St)| ≥ length(v) > |LCPr−t′+1(Sk, St′)|, which contradicts the
optimality of t′.

3.3.2. Finding the Suffix St′

Recall that for a suffix St, |LCPr−t+1(Sk, St)| = min{|LCP(Sk, St)|, r−t+1},
and therefore this value can be computed in O(1) using a single LCA query.
Given v, as described in the previous phase, let w ∈ path(Sk) be its spe-
cific child that is on path(Sk). We then perform the following: we inspect
v and query rangesuccy([x(lv), x(rv)] × [l,∞]). Let (x′, y′) be the point re-
turned by the query (see example in Fig. 5). We also inspect w and perform
rangesuccy([x(lw), x(rw)]×[l,∞]), and let (x′′, y′′) be the resulting point, if such
exists. If (x′′, y′′) does not exist or that y′′ /∈ [l, r − length(v) + 1], we choose
t′ to be y′. Otherwise, notice that y′, y′′ are the two start positions of the rel-
evant suffixes Sy′ , Sy′′ respectively. Pick the value t ∈ {y′, y′′} that maximizes
the expression |LCPr−t+1(Sk, St)| and choose it to be t′ (if both maximize the
expression, choose t′ = min{y′, y′′}). Finally return the resulting substring,
as represented by its start position t′ and its length |LCPr−t′+1(Sk, St′)|. A
pseudo-code of the above process can be seen in Procedure Compute-t′.

Before formally proving the correctness of the above procedure, we provide
some intuition for it. Observe node v once again and the range [x(lv), x(rv)]×
[l, r− length(v) + 1]. There might be several relevant suffixes which are eligible
at v, and therefore have their corresponding suffix points in that range. In this
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Procedure Compute-t′

Input: v

Output: selected t′

1 w ← v’s child on path(Sk);

2 (x′, y′)← rangesuccy([x(lv), x(rv)]× [l,∞]);

3 (x′′, y′′)← rangesuccy([x(lw), x(rw)]× [l,∞]);

4 if (x′′, y′′) does not exist or y′′ /∈ [l, r − length(v) + 1] then

5 t′ ← y′;

6 else

7 if |LCPr−y′+1(Sk, Sy′)| = |LCPr−y′′+1(Sk, Sy′′)| then

8 t′ ← min{y′, y′′};

9 else

10 t′ ← arg maxt∈{y′,y′′}|LCPr−t+1(Sk, St)|;

11 return t′;

13



case, for each such suffix St, v is the node of maximal depth at which St is
eligible. Notice that some of those suffixes may be represented by paths that
branch out from v to w, and some by paths that branch out from v to one of its
other children. Therefore, their potential “contribution to compression” may
be different: for the specific case where for a suffix St, the path from the root
to `t visits v and then w, and also it holds that t + length(v) − 1 < r, there
is an additional eligible portion of St of length r − (t + length(v) − 1) on the
edge (v, w) (figuratively speaking; we mean of course that the additional eligible
portion is a prefix of the substring represented by the label of (v, w)). We refer
to such suffixes as special suffixes and note that the additional portion may be
of a different length for different special suffixes. An example of the special
suffix scenario is shown in Fig. 6. The existence of such special suffixes creates
the need to inspect both v and w.
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Figure 5: In Fig. 4 we found v = v1, since v1 is the node of maximal depth on the path from

the root to S7, at which S7 is eligible w.r.t r = 5. Therefore, the values of our range will

be: x(lv) = 4, x(rv) = 8 and l = 2. Therefore, we obtain the range query as depicted by the

grayed area. The output point of this query will be (5, 4).

We move to the formal proof:

Theorem 1. The value returned by the above procedure is t′ = arg maxt∈[l,r]|LCPr−t+1(Sk, St)|.

Proof. Consider all relevant suffixes that are eligible at v, and therefore are
represented by suffix points in the range [x(lv), x(rv)]× [l, r− length(v) + 1] (by
Lemma 2). By Lemma 3, St′ is among these suffixes, however we do not know
whether path(St′) visits w, or not.

Notice that for all such suffixes St which branch out from v to a node other
than w, it holds that |LCPr−t+1(Sk, St)| = min{|LCP(Sk, St)|, r − t + 1} =
|LCP(Sk, St)| = length(v). As these suffixes all have the same |LCPr−t+1(Sk, St)|
value, our first rangesuccy query simply picks the one with the leftmost start
position.
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Figure 6: In this example, the suffix tree for the string S = aaabcaabc$ is shown. Assume we

wish to compress S[6 . . 9] (i.e., k = 6) and the given context is S[1 . . 4] (i.e., r = 4). Nodes v

and w are labeled accordingly. Notice that the leftmost relevant suffix in Tv is Sy′ = S1 for

which |LCPr−y′+1(Sk, Sy′ )| = min{length(v), r− y′+ 1} = 2. However, the leftmost relevant

suffix in Tw is Sy′′ = S2 for which |LCPr−y′′+1(Sk, Sy′′ )| = r − y′′ + 1 = 3. Therefore we

would like to output start location 2.

On the other hand, for all such suffixes St which branch out from v to w, it
holds that |LCP(Sk, St)| > r− t+ 1 (since for them, |LCP(Sk, St)| ≥ length(w),
but they are not eligible at w) and therefore |LCPr−t+1(Sk, St)| = r − t + 1.
In other words, among these suffixes, the one maximizing |LCPr−t+1(Sk, St)| is
the one with the leftmost start position. As all these suffixes have a one-to-one
correspondence with suffix points in [x(lw), x(rw)] × [l, r − length(v) + 1] (by
Lemma 2 and the fact that those suffixes have paths that visit w), our goal is to
pick the suffix point in the range having the minimal y-coordinate. This is done
by our second rangesuccy query with the additional test that for the resulting
point (x′′, y′′) (if such exists), indeed y′′ ∈ [l, r − length(v) + 1].

Since at first we do not know which of the cases holds for t′, the algorithm
simply chooses the best of both results.

4. Outline of Substring Compression Query Algorithms

Given locations i and j which induce the substring S[i . . j] to be compressed,
we describe the outline of our methods, in an inductive manner:
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• For the first location i, two cases exist, according to query type:

SCQ: write the encoded representation of S[i].

GSCQ: set k ← i and calculate BLCP(k, α, β). For convenience, we
denote |LCP| = |BLCP(k, α, β)|.

• For a general location, assume S[k . . j] is left to be compressed. Again
two cases exist:

SCQ: the LZ method revolves around finding ILCP(k, i, k− 1). For con-
venience, we denote LCP = ILCP(k, i, k − 1).

GSCQ: here we calculate both ILCP(k, i, k− 1) and BLCP(k, α, β), and
choose the longest of both. For convenience, this time we denote
|LCP| = max{|ILCP(k, i, k − 1)|, |BLCP(k, α, β)|}.

It is important to note that in all cases we need not find the LCP itself, but
rather it is sufficient to find its starting position t and its length. Once the proper
|LCP| value is obtained, if k + |LCP| − 1 > j, we truncate its last characters,
leaving only the first j − k + 1.

If no such LCP exists (e.g., |ILCP| = 0 and, if applicable, |BLCP| = 0), we
revert to writing the encoded representation of the current character, i.e., S[k].
Otherwise, we write the encoded representation of the distance to the starting
position t (i.e., the value k − t) and length of LCP, and set k ← k + |LCP|. If
k ≤ j, we repeat this process, otherwise, we stop.

5. Substring Compression Query

Given a string S[1 . . n], it will be preprocessed to efficiently answer queries
of the form SCQ(i, j), in which we are asked to find the compression of the sub-
string S[i . . j]. The compression of S[i . . j] will then be computed by performing
ILCP queries in the manner described above until the compressed representation
of the entire substring has been found.

5.1. Analysis

Our running times and space used are heavily affected by the choice of the
range searching structure used. The following presents the general trade-off
scheme:

Theorem 2. SCQ(i, j) can be answered in worst-case O(C(i, j)Qrsucc) time,
using a structure which employs O(Srsucc) space, where Qrsucc and Srsucc stand
for the query-time and space of the range successor structure, respectively.

Proof. We analyze the space and query time:
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Table 2: SCQ tradeoffs

rsucc/rpred Query Time Space

[30] O(C(i, j) log logn) O(n logε n)

[30] O(C(i, j)(log logn)2) O(n log logn)

[30] O(C(i, j) logε n) O(n)

[12] O(C(i, j)) O(n1+ε)

Space. Consists of: O(n) for the suffix tree, augmented with the additional
x(`) and length(u) values, and LCA information; Srsucc for the range suc-
cessor structure. Since in all of our configurations, the space for the range
successor structure dominates the space requirements, we conclude the
space used is O(Srsucc).

Query Time. For each of the C(i, j) phrases encoded, we use: Qrsucc for range
predecessor (resp. successor) queries made in order to find `t1 (resp. `t2);
O(1) in order to compute both |LCA(`k, `t1)| and |LCA(`k, `t2)|, and
choose the maximum of both. We conclude the query time is overall
O(C(i, j)Qrsucc).

Substituting in the different flavors for range successor data structure of Nekrich
and Navarro [30], we get the query time-space trade-offs presented in Table 2.

We also provide the following trade-off:

Theorem 3. For any constant ε > 0, SCQ(i, j) can be answered in worst-case
O(C(i, j)) time, using a structure which employs O(n1+ε) space.

Proof. Notice that our range queries are performed on x(`) and y(`) values.
A unique property of these values is that no x(`) or y(`) value occurs twice
in P , i.e., the sequence of point x-coordinates, and the sequence of point y-
coordinates, are both permutations of [n + 1]. Using the range next value
structure of [12] allows us to obtain the following tradeoff: the space used is
dominated by the O(n1+ε) space required for the range successor structure, and
for the query time, since a single range successor/predecessor query can now be
answered in O(1), the overall query time is worst-case O(C(i, j)).

6. General Substring Compression Query

For GSCQ, in addition to the two locations i and j, which denote the
substring S[i . . j] to be compressed, we receive two more indices α and β,
which induce a context substring S[α . . β]. This time we are asked to provide
LZ(S[i . . j] | S[α . . β]).

Here, when trying to compress S[k . . j] for some i ≤ k ≤ j, we have two
options: for the first we consider phrases having a start position i ≤ t ≤ k − 1.
This option is the one solved in Section 5, using ILCP queries. The second, is
to consider phrases taken from S[α . . β]. This will be done using a BLCP query.
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6.1. Analysis

The analysis is depicted in the following theorem:

Theorem 4. GSCQ(i, j, α, β) can be answered in worst-case

O(Cα,β(i, j)(log(
j − i

Cα,β(i, j)
)Qempt +Qrsucc))

time, using a structure which takes O(Sempt + Srsucc) space, where Qempt and
Sempt (resp. Qrsucc and Srsucc) are the query time and space of the range empti-
ness (resp. range successor) structure, respectively.

Proof. As follows:

Space. Consists of: O(n) for the suffix tree, augmented with the additional
x(lu), x(ru) and length(u) values, LCA and level-ancestor structure infor-
mation. These bounds will be dominated by the range searching structures
chosen.

Query Time. Consider the query’s main loop described in Section 4 and con-
sider the d-th iteration of the query algorithm main loop, and let lend be
the length of the phrase encoded in this iteration (d = 1, . . . , Cα,β(i, j)).
Assume S[k . . j] is the portion left to be compressed just before this it-
eration, and let nodes v, p, and q be as defined before. It holds that
depth(p) ≤ length(p) ≤ length(v) ≤ |BLCP(k, α, β)|. Node q was found
one iteration after node p. Therefore:

depth(q) ≤ 2(depth(p) + 1) ≤ 2(|BLCP(k, α, β)|+ 1) . (1)

We conclude that finding q was done by performing O(log|BLCP(k, α, β)|)
node accesses, and the following binary search, was supported by perform-
ing

O(log(depth(q)− depth(p))) = O(log|BLCP(k, α, β)|) (2)

node accesses. Since

|BLCP(k, α, β)| ≤ max{|ILCP(k, i, k − 1)|, |BLCP(k, α, β)|} = lend , (3)

and when accessing each node, a range emptiness query was conducted,
overall time for the mixed search described is O(log(lend) ·Qempt), where
Qempt is the query time used for the emptiness query. We conclude that
a BLCP(k, α, β) query can be answered in O(log(lend) · Qempt + Qrsucc),
where Qrsucc is the time required for each of the two final range successor
queries performed. Recall that an ILCP(k, i, k − 1) query is also made,
however, this query only takes O(Qempt) time, and therefore does not
influence the time bound.

We conclude that GSCQ can be answered in overall

O

Qempt

Cα,β(i,j)∑
d=1

log(lend) + Cα,β(i, j)Qrsucc

 (4)
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Table 3: GSCQ tradeoffs

empt rsucc Query Time Space

[12] [12] O
(
Cα,β(i, j) log

( j−i
Cα,β(i,j)

))
O(n1+ε)

[5] [30] O
(
Cα,β(i, j) log

( j−i
Cα,β(i,j)

)
log logn

)
O(n logε n)

[5] [30] O
(
Cα,β(i, j)

(
log

( j−i
Cα,β(i,j)

)
log logn+ (log logn)2

))
O(n log logn)

[30] [30] O
(
Cα,β(i, j) log

( j−i
Cα,β(i,j)

)
logε n

)
O(n)

time. {lend}
Cα,β(i,j)
d=1 is a partition of |S[i . . j]| = j − i + 1, therefore the

above expression is maximized when len1 = · · · = lenCα,β(i,j) = j−i+1
Cα,β(i,j)

.

We conclude that GSCQ(i, j, α, β) can be answered in

O(Cα,β(i, j)(log(
j − i

Cα,β(i, j)
)Qempt +Qrsucc)) (5)

time.

The choice of range emptiness and range successor structures will determine
the time bounds for their respective queries. Tradeoff results are given in the
following corollaries, and in Table 3, where the column labeled “empt” denotes
the range emptiness structure used, and the column labeled “rsucc” denotes the
range successor structure used.

7. Conclusion

The goal of our research was to find the inherent connection between the
compressed representation of a string and that of its substrings. We have based
our research on the Lempel-Ziv algorithm and focused our attention on two main
variants of the problem: basic substring compression, and generalized substring
compression. For these problems we have achieved the following query times:
given a string S, for a chosen substring S[i . . j] (possibly with the substring
S[α . . β] as a context), assuming C phrases are needed for the compressed rep-
resentation of S[i . . j] using the LZ77 algorithm, the best query times we achieve
are O(C) and O

(
C log

(
j−i
C

))
for the basic substring compression query and the

generalized substring compression query, respectively. While initial results for
these problems were presented in [8], our results are an improvement for the
basic substring compression query, and are the first known correct ones for the
generalized substring compression query. The problems we have dealt with, and
the solutions proposed, leave us with two main problems that may each be of
independent interest.

1. The main problem left open following our research pertains to other com-
pression algorithms. Specifically, how can other compression mechanisms
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be adapted to deal with substring compression. This problem was pre-
sented in the original paper dealing with this problem [8], and we leave
it open following our research as well. It seems as though algorithms such
as Arithmetic encoding and algorithms relying on the Burrows-Wheeler
transform would be more difficult to adapt to substring compression if at
all possible, however this is simply a conjecture and such research should
be of independent interest.

2. Another interesting problem may be to investigate the solutions for sub-
strings for other classic stringology problems. For example, in the classical
edit-distance problem, how can we efficiently retrieve the edit distance for
any two substrings of the strings at hand. Specifically, can the known
solutions inherently solve the problem for substrings as well? Or how can
they be adapted to work for substrings?
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